Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les méthodes de classification des documents, y compris k-Nearest-Neighbors, Naïve Bayes Classifier, les modèles de transformateurs, et l'attention multi-têtes.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Explore Support Vector Machines, couvrant la marge ferme, la marge souple, la perte de charnière, la comparaison des risques et la perte de charnière quadratique.
Explore la maximisation des marges pour une meilleure classification à l'aide de machines vectorielles de support et l'importance de choisir le bon paramètre.
Explore les machines vectorielles de support, maximisant la marge pour une classification robuste et la transition vers la SVM logicielle pour les données séparables non linéairement.
Explore les effets isotopiques cinétiques et les relations linéaires d'énergie libre, en introduisant des méthodes d'apprentissage automatique pour les applications chimiques.
Couvre un cours intensif sur l'apprentissage profond, y compris le Mark I Perceptron, les réseaux neuronaux, les algorithmes d'optimisation et les aspects de formation pratique.