Concept

Local diffeomorphism

Concepts associés (5)
Variété différentielle
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Immersion (mathématiques)
En géométrie différentielle, une immersion est une application différentiable d'une variété différentielle dans une autre, dont la différentielle en tout point est injective. Soient V et W deux variétés et f une application différentiable de V dans W. On dit que f est une immersion si pour tout x appartenant à V, le rang de l'application linéaire tangente Tf(x) est égal à la dimension de V. On la différencie : de la submersion (le rang de Tf(x) est égal à la dimension de W) ; du plongement (en plus d'être une immersion, f est un homéomorphisme de V sur f(V)).
Rank (differential topology)
In mathematics, the rank of a differentiable map between differentiable manifolds at a point is the rank of the derivative of at . Recall that the derivative of at is a linear map from the tangent space at p to the tangent space at f(p). As a linear map between vector spaces it has a well-defined rank, which is just the dimension of the in Tf(p)N: A differentiable map f : M → N is said to have constant rank if the rank of f is the same for all p in M. Constant rank maps have a number of nice properties and are an important concept in differential topology.
Submersion (mathématiques)
En topologie différentielle – une branche des mathématiques –, une submersion ou application submersive entre deux variétés différentielles est une application différentiable dont la différentielle en tout point est surjective. Soient V et W deux variétés différentielles, f une application différentiable de V dans W et x un point de V. On dit que f est une submersion au point x si l'application linéaire tangente Tf(x) est surjective, autrement dit (W étant supposée de dimension finie) : si le rang de Tf(x) est égal à la dimension de W.
Théorème d'inversion locale
En mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.