Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.
Couvre la régression polynôme, la descente en gradient, le surajustement, le sous-ajustement, la régularisation et la mise à l'échelle des caractéristiques dans les algorithmes d'optimisation.
Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.
Introduit les bases de l'apprentissage automatique, couvrant la classification supervisée, les limites de décision et l'ajustement de la courbe polynomiale.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Discuter du compromis entre les variables biaisées dans l'apprentissage automatique, en mettant l'accent sur l'équilibre entre la complexité du modèle et l'exactitude des prédictions.
Explore les méthodes de régularisation dans les réseaux neuronaux, en soulignant l'importance des bases d'entraînement et de validation pour éviter les surajustements.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.