Espace précompactEn topologie, une branche des mathématiques, un espace métrique E est précompact si, pour tout ε > 0, on peut recouvrir E par un nombre fini de boules de rayon ε. La propriété principale est qu'un espace métrique est compact si et seulement s'il est précompact et complet. La notion de précompacité et ses propriétés se généralisent aux espaces uniformes. Soit E un espace métrique. Si l'une des trois propriétés suivantes est vérifiée, alors toutes trois le sont et E est dit précompact.
Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Auxiliary normed spaceIn functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm The other method is used if the disk is absorbing: in this case, the auxiliary normed space is the quotient space If the disk is both bounded and absorbing then the two auxiliary normed spaces are canonically isomorphic (as topological vector spaces and as normed spaces).