Almost open mapIn functional analysis and related areas of mathematics, an almost open map between topological spaces is a map that satisfies a condition similar to, but weaker than, the condition of being an open map. As described below, for certain broad categories of topological vector spaces, surjective linear operators are necessarily almost open. Given a surjective map a point is called a for and is said to be (or ) if for every open neighborhood of is a neighborhood of in (note that the neighborhood is not required to be an neighborhood).
Espace vectoriel quotientEn algèbre linéaire, l'espace vectoriel quotient E/F d'un espace vectoriel E par un sous-espace vectoriel F est la structure naturelle d'espace vectoriel sur l'ensemble quotient de E par la relation d'équivalence définie de la manière suivante : v est en relation avec w si et seulement si v – w appartient à F. C'est donc l'ensemble des classes [v] = v + F, où v parcourt E, muni des lois suivantes : somme vectorielle : [v] + [w] = [v + w] ; multiplication par un scalaire : λ [v] = [λ v].
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
Baire spaceIn mathematics, a topological space is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the , compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. For more motivation and applications, see the article .
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.
Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Closed graph theorem (functional analysis)In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed. The closed graph theorem has extensive application throughout functional analysis, because it can control whether a partially-defined linear operator admits continuous extensions.