Spin representationIn mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature (i.e., including indefinite orthogonal groups). More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields. Elements of a spin representation are called spinors.
Generalized permutation matrixIn mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is An invertible matrix A is a generalized permutation matrix if and only if it can be written as a product of an invertible diagonal matrix D and an (implicitly invertible) permutation matrix P: i.
Real projective lineIn geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point.
Projective orthogonal groupIn projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} where O(V) is the orthogonal group of (V) and ZO(V)={±I} is the subgroup of all orthogonal scalar transformations of V – these consist of the identity and reflection through the origin.
Householder transformationIn linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. Its analogue over general inner product spaces is the Householder operator. The reflection hyperplane can be defined by its normal vector, a unit vector (a vector with length ) that is orthogonal to the hyperplane.
Examples of groupsSome elementary examples of groups in mathematics are given on Group (mathematics). Further examples are listed here. Dihedral group of order 6 Consider three colored blocks (red, green, and blue), initially placed in the order RGB. Let a be the operation "swap the first block and the second block", and b be the operation "swap the second block and the third block". We can write xy for the operation "first do y, then do x"; so that ab is the operation RGB → RBG → BRG, which could be described as "move the first two blocks one position to the right and put the third block into the first position".
Tore algébriqueUn tore algébrique est une construction mathématique qui apparaît dans l'étude des groupes algébriques. Ils constituent l'un des premiers exemples de tels groupes. La notion est due à Armand Borel en 1956, progressivement étendue par Alexandre Grothendieck et pour atteindre sa forme moderne. Les tores algébriques entretiennent d'étroites relations avec la théorie de Lie et les groupes algébriques.
Tour de PostnikovEn théorie de l'homotopie, une branche de la topologie algébrique, une tour de Postnikov (ou système de Postnikov) est un objet permettant de reconstruire un espace topologique à partir de ses groupes d'homotopie. Une tour de Postnikov pour un espace X connexe par arcs est un morphisme de X vers une suite d'espaces et d'applications continues, ...→ X →...→ X→ X, tel que chaque application X→X induit des isomorphismes des π pour k ≤ n ; π(X) = 0 pour k > n. Tout CW-complexe connexe possède une telle « tour ».
Matrices congruentesEn algèbre linéaire, deux matrices carrées A et B (de même taille et à coefficients dans un même corps K) sont dites congruentes si elles représentent la même forme bilinéaire dans deux bases différentes, c'est-à-dire s'il existe une matrice inversible P telle que où P est la transposée de P. La congruence définit une relation d'équivalence sur les matrices carrées de même taille à coefficients dans K. Deux matrices congruentes ont même rang.
Point groups in two dimensionsIn geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.