Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Let n > 2 be even; r >= 1 be an integer; 0 < alpha < 1; Omega be a bounded, connected, smooth, open set in R-n; and nu be its exterior unit normal. Let f, g is an element of C-r,C-alpha((Omega) over bar; Lambda(2)) be two symplectic forms (i.e., closed and ...
The anomalous dimensions of local single trace gauge invariant operators in N = 4 supersymmetric Yang-Mills theory can be computed by diagonalizing a long range integrable Hamiltonian by means of a perturbative asymptotic Bethe ansatz. This formalism break ...
The class of loop spaces of which the mod p cohomology is Noetherian is much larger than the class of p-compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg-Mac Lane spaces such as ℂP∞ and 3-connected covers of co ...
The underlying goal of this Master's thesis is of laying down, in so far as possible, the foundations for later work in Geometric Stochastic Mechanics. The first part is a presentation of symplectic reduction, going through the momentum map and culminating ...
Strongly torsion generated groups are those with a single normal generator, of arbitrary finite order. They are useful for realizing sequences of abelian groups as homology groups. Known examples include stable alternating groups and stable groups generate ...
The theory of discrete variational mechanics has its roots in the optimal control literature of the 1960's. The past ten years have seen a major development of discrete variational mechanics and corresponding numerical integrators, due largely to pioneerin ...
This paper introduces and studies a class of optimal control problems based on the Clebsch approach to Euler-Poincare dynamics. This approach unifies and generalizes a wide range of examples appearing in the literature: the symmetric formulation of N-dimen ...
We derive equations of motion for the dynamics of anisotropic particles directly from the dissipative Vlasov kinetic equations, with the dissipation given by the double-bracket approach (double-bracket Vlasov, or DBV). The moments of the DBV equation lead ...
The goal of this paper is to derive the Hamiltonian structure of polarized and magnetized Euler-Maxwell fluids by reduction of the canonical symplectic form on phase space, and to generalize the dynamics to the nonabelian case. The Hamiltonian function we ...
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonloca ...