Anomalie moyenneEn mécanique céleste, l'anomalie moyenne (en anglais : mean anomaly) est une mesure d'angle entre le périapse et la position d'un corps fictif parcourant une orbite circulaire synchrone avec le corps réel. Le terme "anomalie" trouve son origine historique dans le système géocentrique antique dans lequel les anciens constataient une anomalie de l'orbite par rapport à l'orbite circulaire idéale. L'anomalie moyenne est couramment notée (lettre M capitale de l'alphabet latin).
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
Kepler problemIn classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
Moment cinétique spécifiqueEn mécanique céleste, le moment cinétique spécifique joue un rôle important pour la solution du problème à deux corps. On peut démontrer que ce vecteur est constant pour une orbite dans des conditions idéales. Ceci mène directement à la deuxième loi de Kepler. Cet article traite du moment cinétique spécifique parce qu'il ne s'agit pas du moment cinétique proprement dit, mais du moment cinétique par unité de masse pour être exact la masse réduite . Son unité SI est donc m2·s−1.
Anomalie excentriquelang=fr|thumb|Diagramme montrant diverses anomalies d'une ellipse. Dans la description de l'orbite képlérienne d'un objet céleste, l'anomalie excentrique, en général notée E, est l'angle entre la direction du périapside et la position courante d'un objet sur son orbite, projetée sur le cercle exinscrit perpendiculairement au grand axe de l'ellipse, mesuré au centre de celle-ci. Dans le diagramme ci-contre, c'est l'angle zcx. z est le périapside, p la position de l'objet, s le foyer de son orbite elliptique, c le centre de l'ellipse.
Force centraleEn mécanique classique du point matériel, un champ de forces est dit champ de force centrale, de centre O s'il vérifie . Le support de la force passe par le centre fixe O. L'étude du mouvement à force centrale fut un des premiers problèmes de mécanique résolu par Newton. Si la force centrale est conservative, elle dérive d'une énergie potentielle (scalaire), notée . Souvent la constante est choisie conventionnellement, si cela est possible, pour que .
Anomalie vraielang=fr|vignette|Diagramme montrant diverses anomalies d'une ellipse. L'anomalie vraie y est notée . En mécanique céleste, l'anomalie vraie est l'angle entre la direction du périapside et la position courante d'un objet sur son orbite, mesuré au foyer de l'ellipse (le point autour duquel le corps orbite). Dans le diagramme ci-contre, c'est , c'est-à-dire l'angle zsp. L'anomalie vraie correspond, comme son nom le suggère, à un angle existant réellement dans l'orbite d'un corps céleste.
Équation de KeplerEn astronomie, l'équation de Kepler est une formule liant, dans une orbite, l'excentricité e et l'anomalie excentrique E à l'anomalie moyenne M. L'importance de cette équation est qu'elle permet de passer des paramètres dynamiques du mouvement d'un astre (l'anomalie moyenne) aux paramètres géométriques (l'anomalie excentrique). Cette équation a été établie par Kepler dans le cas des orbites elliptiques, en analysant les relevés de position de la planète Mars effectués par Tycho Brahe.
Circular motionIn physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with a constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.
Astronomia novaAstronomia nova (Astronomie nouvelle, en latin) est un ouvrage d'astronomie écrit par Johannes Kepler (1571-1630) entre et , et dont l'editio princeps est parue en 1609 à Heidelberg. Il contient les résultats de ses années de travail sur les mouvements de la planète Mars. Son titre complet en est Astronomia nova aitiologetos, seu physica coelestis, tradita commentariis de motibus stellae Martis, ex observationibus G. V. Tychonis Brahe. Kepler, poursuivi pour ses convictions religieuses et ses idées coperniciennes, quitte Graz en 1600.