Concepts associés (24)
Règle 68-95-99,7
vignette|Illustration de la règle 68-95-99.7 (à partir d'une expérience réelle, ce qui explique l'asymétrie par rapport à la loi normale). En statistique, la règle 68-95-99,7 (ou règle des trois sigmas ou règle empirique) indique que pour une loi normale, presque toutes les valeurs se situent dans un intervalle centré autour de la moyenne et dont les bornes se situent à trois écarts-types de part et d'autre de celle-ci. Environ 68,27 % des valeurs se situent à moins d'un écart-type de la moyenne.
Taille d'effet
En statistique, une taille d'effet est une mesure de la force de l'effet observé d'une variable sur une autre et plus généralement d'une inférence. La taille d'un effet est donc une grandeur statistique descriptive calculée à partir de données observées empiriquement afin de fournir un indice quantitatif de la force de la relation entre les variables et non une statistique inférentielle qui permettrait de conclure ou non si ladite relation observée dans les données existe bien dans la réalité.
Centile
thumb|Définition du 95e centile d'une loi de Fisher-Snedecor En statistique descriptive, un centile (ou percentile) est une des 99 valeurs qui divisent une distribution de données en 100 parts égales de sorte que le p-ième centile soit la valeur supérieure à p % des autres valeurs. Les centiles sont un cas particulier des quantiles. Voir l'article "quantile" pour les méthodes. Un centile est calculé en tant que 100-quantile.
Test de Student
En statistique, un test de Student, ou test t, désigne n'importe quel test statistique paramétrique où la statistique de test calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. gauche|vignette|Façade de la brasserie historique Guinness de St. James. vignette|William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.
Consistent estimator
In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.
Loi uniforme continue
En théorie des probabilités et en statistiques, les lois uniformes continues forment une famille de lois de probabilité à densité. Une telle loi est caractérisée par la propriété suivante : tous les intervalles de même longueur inclus dans le support de la loi ont la même probabilité. Cela se traduit par le fait que la densité de probabilité d'une loi uniforme continue est constante sur son support. Elles constituent donc une généralisation de la notion d'équiprobabilité dans le cas continu pour des variables aléatoires à densité ; le cas discret étant couvert par les lois uniformes discrètes.
Exactitude et précision
vignette|Schéma de l'exactitude et la précision appliquée à des lancers de fléchettes. Dans la mesure d'un ensemble, l'exactitude est la proximité des mesures à une valeur spécifique, tandis que la précision est la proximité des mesures les unes par rapport aux autres. L'exactitude a deux définitions : Plus communément, il s'agit d'une description des erreurs systématiques, une mesure du biais statistique ; une faible précision entraîne une différence entre un résultat et une valeur « vraie ».
Puissance statistique
La puissance statistique d'un test est en statistique la probabilité de rejeter l'hypothèse nulle (par exemple l'hypothèse selon laquelle les groupes sont identiques au regard d'une variable) sachant que l'hypothèse nulle est incorrecte (en réalité les groupes sont différents). On peut l'exprimer sous la forme 1-β où β est le risque de c'est-à-dire le risque de ne pas démontrer que deux groupes sont différents alors qu'ils le sont dans la réalité.
Signification statistique
vignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Pooled variance
In statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance. Under the assumption of equal population variances, the pooled sample variance provides a higher precision estimate of variance than the individual sample variances.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.