Fonction totient de JordanEn théorie des nombres, la k-ième fonction totient de Jordan J — nommée d'après le mathématicien Camille Jordan — est la fonction arithmétique qui à tout entier n > 0 associe le nombre de k-uplets d'entiers compris entre 1 et n qui, joints à n, forment un k + 1-uplet de nombres premiers entre eux. C'est une généralisation de la fonction φ d'Euler, qui est J. La fonction J est multiplicative et vaut où le produit est indexé par tous les diviseurs premiers p de n.
Dedekind psi functionIn number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by where the product is taken over all primes dividing (By convention, , which is the empty product, has value 1.) The function was introduced by Richard Dedekind in connection with modular functions. The value of for the first few integers is: 1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, ... . The function is greater than for all greater than 1, and is even for all greater than 2.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Série de BellEn théorie des nombres, les séries de Bell sont des séries formelles utilisées pour étudier les propriétés des fonctions arithmétiques. Elles ont été introduites et développées par Eric Temple Bell. Si f est une fonction arithmétique et p un nombre premier, on définit la série de Bell d'indice p de f : Deux fonctions multiplicatives f et g sont égales si (et seulement si), pour tout entier premier p, on a : . Pour deux fonctions arithmétiques f et g,où h est le produit de convolution de Dirichlet de f et de g.
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.