Fonction totient de JordanEn théorie des nombres, la k-ième fonction totient de Jordan J — nommée d'après le mathématicien Camille Jordan — est la fonction arithmétique qui à tout entier n > 0 associe le nombre de k-uplets d'entiers compris entre 1 et n qui, joints à n, forment un k + 1-uplet de nombres premiers entre eux. C'est une généralisation de la fonction φ d'Euler, qui est J. La fonction J est multiplicative et vaut où le produit est indexé par tous les diviseurs premiers p de n.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.