Résumé
En statistiques, une copule est un objet mathématique venant de la théorie des probabilités. La copule permet de caractériser la dépendance entre les différentes coordonnées d'un vecteur aléatoire à valeurs dans sans se préoccuper de ses lois marginales. Une copule est une fonction de répartition, notée C, définie sur [0, 1], dont les marges sont uniformes sur [0, 1]. Une caractérisation est alors que : si une des composantes ui est nulle, C est d- croissante. En dimension 2, pour tout u et v, et , pour tout u et v, et enfin, la propriété de 2-croissance se traduit par pour tout et . L'interprétation de cette notion de croissance se fait en notant que si (U, V) admet pour fonction de répartition C, la mesure étant nécessairement positive. Le théorème de Sklar dit que si C est une copule, et si sont des fonctions de répartition (univariées), alors est une fonction de répartition de dimension d, dont les marges sont précisément . Et réciproquement, si F est une fonction de répartition en dimension d, il existe une copule C telle que , où les Fi sont les lois marginales de F. Si ces lois marginales sont toutes continues, la copule C est alors unique, et donnée par la relation . Dans ce cas, on pourra alors parler de la copule associée à un vecteur aléatoire . La copule d'un vecteur aléatoire est alors la fonction de répartition du vecteur aléatoire , que l'on notera parfois . Un intérêt de la copule est de simuler une variable aléatoire multivariée à partir de sa copule et de ses lois marginales. Il suffit de générer un échantillon à partir de la copule et de construire l'échantillon voulu grâce à la relation: où désigne la fonction quantile associée à Etant donné un échantillon , si désigne la fonction de répartition empirique de la ème composante, et si (correspondant au rang de divisé par ), la fonction de répartition du vecteur , appelée fonction de dépendance empirique ou, copule empirique. La copule est alors vue comme la fonction de répartition des rangs (au facteur près).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (11)
Mathématiques financières
Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
Value at risk
La VaR (de l'anglais value at risk, mot à mot : « valeur à risque », ou « valeur en jeu ») est une notion utilisée généralement pour mesurer le risque de marché d'un portefeuille d'instruments financiers. Elle correspond au montant de pertes qui ne devrait être dépassé qu'avec une probabilité donnée sur un horizon temporel donné. L'utilisation de la VaR n'est désormais plus limitée aux instruments financiers : on peut en faire un outil de gestion des risques dans tous les domaines (, par exemple).
Fonction quantile
En probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Afficher plus