Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating (or panmictic) population, allele frequencies are expected to be roughly similar between groups. However, mating tends to be non-random to some degree, causing structure to arise. For example, a barrier like a river can separate two groups of the same species and make it difficult for potential mates to cross; if a mutation occurs, over many generations it can spread and become common in one subpopulation while being completely absent in the other. Genetic variants do not necessarily cause observable changes in organisms, but can be correlated by coincidence because of population structure—a variant that is common in a population that has a high rate of disease may erroneously be thought to cause the disease. For this reason, population structure is a common confounding variable in medical genetics studies, and accounting for and controlling its effect is important in genome wide association studies (GWAS). By tracing the origins of structure, it is also possible to study the genetic ancestry of groups and individuals. The basic cause of population structure in sexually reproducing species is non-random mating between groups: if all individuals within a population mate randomly, then the allele frequencies should be similar between groups. Population structure commonly arises from physical separation by distance or barriers, like mountains and rivers, followed by genetic drift. Other causes include gene flow from migrations, population bottlenecks and expansions, founder effects, evolutionary pressure, random chance, and (in humans) cultural factors. Even in lieu of these factors, individuals tend to stay close to where they were born, which means that alleles will not be distributed at random with respect to the full range of the species. Population structure is a complex phenomenon and no single measure captures it entirely.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-302: Biophysics : physics of biological systems
Understand and use the results and methods of population genetics, population dynamics, network theory, and reaction network dynamics to analyze and predict the behavior of living systems
MATH-438: Statistical genetics
This course will cover the major topics in statistical genetics.
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
Afficher plus
Publications associées (100)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.