Une table de Cayley est un tableau à double entrée. Lorsqu'un ensemble fini E est muni d'une loi de composition interne •, il est possible de créer un tableau qui présente, pour tous les éléments a et b de E, les résultats obtenus par cette loi • : à l'intersection de la ligne représentant a et de la colonne b se trouve a•b. Le tableau ainsi constitué est appelé table de Cayley du magma (E,•). Cette présentation est semblable à la table de multiplication et à la table d'addition des écoliers. Les tables de Cayley permettent de faciliter l'étude des groupes finis. La donnée d'une telle table équivaut à celle de la structure du groupe qu'elle représente. On peut se référer à cette table pour effectuer des calculs, comme avec une table de multiplication. Certaines propriétés sont immédiatement visibles dans la table, comme la commutativité ou le fait que le magma donné soit un quasigroupe. Ces tableaux sont ainsi nommés en l'honneur du mathématicien Arthur Cayley qui les présenta pour la première fois en 1854. Exemple de table : La ligne et la colonne dans la table de Cayley d'un groupe fini qui représentent l'élément neutre (typiquement écrits en premier) sont des copies de la ligne et de la colonne (respectivement) des entrées de la table. Cette propriété découle trivialement de la définition d'un élément neutre. Tous les éléments d'une ligne ou d'une colonne donnée dans la table de Cayley d'un groupe fini sont représentés exactement une fois. Il apparaît de ces propriétés que les seuls groupes (à un isomorphisme près) d'ordres respectifs 1, 2, 3 et 4 sont représentés par les tables de Cayley suivantes ( représente l'élément neutre pour chaque groupe). La propriété des groupes finis que tout groupe fini d'ordre premier est isomorphe au groupe cyclique de cet ordre est ici illustrée pour les groupes d'ordre 2 et 3. Ordre 1 : il n'y a qu'un seul groupe d'ordre 1, soit le groupe trivial. Sa table de Cayley est la suivante. Ordre 2 : le seul groupe d'ordre 2 est cyclique. Sa table de Cayley est la suivante.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.