En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L'ordre d'un groupe est le cardinal de son ensemble sous-jacent. Le groupe est dit fini ou infini suivant que son ordre est fini ou infini. Si un élément a d'un groupe G engendre dans G un sous-groupe (monogène) fini d'ordre d, on dit que a est d'ordre fini et, plus précisément, d'ordre d. Si le sous-groupe engendré par a est infini, on dit que a est d'ordre infini. Si a est d'ordre fini, son ordre est le plus petit entier strictement positif m tel que am = e (où e désigne l'élément neutre du groupe, et où am désigne le produit de m éléments égaux à a). L'ordre d'un groupe G se note ord(G), |G| ou #G, et l'ordre d'un élément a se note ord(a) ou |a|. Le cube de Rubik permet d'illustrer la notion d'ordre d'un élément d'un groupe, où l'on découvre dans une pratique même élémentaire du cube de nombreux mouvements d'ordres variés(2, 3, 4, 6, ... ). Dans le groupe monogène infini Z, tout élément non nul est d'ordre infini. Dans un groupe cyclique Z/nZ avec n > 0, l'ordre de la classe modulo n d'un entier k est n/PGCD(n, k). Le groupe symétrique ≃ D, constitué de toutes les permutations de trois objets, possède la table de multiplication suivante : {| cellspacing="0" cellpadding="8" border="1" |- ! • ! e || s || t || u || v || w |- ! e | e || s || t || u || v || w |- ! s | s || e || v || w || t || u |- ! t | t || u || e || s || w || v |- ! u | u || t || w || v || e || s |- ! v | v || w || s || e || u || t |- ! w | w || v || u || t || s || e |} Ce groupe possède six éléments, si bien que ord(S) = 6. Par définition, l'ordre de l'élément neutre, e, est 1. Chaque carré de s, t, et w est égal à e, donc ces éléments du groupe sont d'ordre 2. En complétant l'énumération, u et v sont tous deux d'ordre 3, car u = v, u = vu = e, v = u et v = uv = e. L'ordre d'un groupe et l'ordre de ses éléments donnent des informations sur la structure du groupe. Informellement, plus la décomposition de l'ordre est compliquée, plus le groupe l'est.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (23)
Automorphism group
In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Groupe fini
vignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Nombre composé
Un nombre composé est un entier naturel différent de 0 qui possède un diviseur positif autre que 1 ou lui-même. Par définition, chaque entier plus grand que 1 est donc soit un nombre premier, soit un nombre composé, et les nombres 0 et 1 ne sont ni premiers ni composés. Autre définition : un nombre composé est le produit d'au moins deux nombres premiers (qu'ils soient distincts ou identiques). Par exemple, l'entier 14 est un nombre composé parce qu'il a les nombres 1, 2, 7 et 14 pour diviseurs (quatre diviseurs).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.