Strong dual spaceIn functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Espace réflexifEn analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Quasibarrelled spaceIn functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds. A subset of a topological vector space (TVS) is called bornivorous if it absorbs all bounded subsets of ; that is, if for each bounded subset of there exists some scalar such that A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed.
Bornivorous setIn functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of . Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces.
Polar topologyIn functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
Quasi-complete spaceIn functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non-metrizable TVSs. Every quasi-complete TVS is sequentially complete. In a quasi-complete locally convex space, the closure of the convex hull of a compact subset is again compact. In a quasi-complete Hausdorff TVS, every precompact subset is relatively compact.
Mackey spaceIn mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual. They are named after George Mackey. Examples of locally convex spaces that are Mackey spaces include: All barrelled spaces and more generally all infrabarreled spaces Hence in particular all bornological spaces and reflexive spaces All metrizable spaces.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
Sequentially completeIn mathematics, specifically in topology and functional analysis, a subspace S of a uniform space X is said to be sequentially complete or semi-complete if every Cauchy sequence in S converges to an element in S. X is called sequentially complete if it is a sequentially complete subset of itself. Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them. A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk.