Résumé
En analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans . Ainsi, envoie vers la forme linéaire continue sur donnée par l'évaluation en . Comme conséquence du théorème de Hahn-Banach, préserve la norme (soit encore ) et est donc injective. L'espace est alors dit réflexif si est bijective. Remarques. Cette définition implique que tout espace normé réflexif est de Banach, puisque est isomorphe à . L' est non réflexif, bien qu'isométriquement isomorphe à son bidual topologique (par un autre morphisme que ). Tout espace vectoriel normé de dimension finie n est réflexif. En effet son dual (qui coïncide avec le dual topologique puisque toute application linéaire est continue) a pour dimension n, qui est donc aussi la dimension du bidual, si bien que l'injection linéaire J est alors bijective. Tout espace de Hilbert est réflexif, de même que les espaces Lp pour 1 < p < ∞. De manière générale : tout espace de Banach uniformément convexe est réflexif d'après le théorème de Milman-Pettis. Les espaces de suites c, l1 et l∞ ne sont pas réflexifs. L'espace C([0, 1]) non plus. Les espaces de Montel sont réflexifs, pour une définition de la réflexivité généralisant celle présentée ici seulement dans le cas normé. Si Y est un sous-espace vectoriel fermé d'un espace réflexif X alors Y et X/Y sont réflexifs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.