En physique des particules, la charge de couleur est une propriété des quarks et des gluons, reliée à l'interaction forte, dans le contexte de la chromodynamique quantique. Il est à noter que la « charge de couleur » des quarks et des gluons n'a aucun rapport avec un aspect visuel de la couleur. Le choix du terme couleur est due à une analogie reliant la charge responsable de l'interaction forte entre des particules aux couleurs primaires qui ont été définies pour décrire la vision humaine : rouge, vert, et bleu. Une autre palette possible serait rouge, jaune et bleu, en analogie avec la peinture plutôt qu'avec la lumière, mais l'important dans cette analogie est que le groupement des trois couleurs primaires donne un résultat « blanc », c'est-à-dire non coloré, ou si l'on préfère neutralisé, du point de vue de la charge de couleur. À chaque particule correspond une antiparticule. Une particule de couleur rouge, verte ou bleue a une antiparticule correspondante, dont la couleur sera antirouge, antiverte ou antibleue, respectivement, pour satisfaire la conservation du bilan de la charge de couleur dans les créations et annihilations particule-antiparticule. Une combinaison des trois couleurs, des trois anticouleurs, ou toute combinaison d'une couleur et de son anticouleur complémentaire est donc dite « blanche » ou « sans couleur », et a une charge de couleur nette nulle. Les particules libres sont blanches : les baryons sont composés de trois quarks rouge, vert et bleu (ou d'antiquarks des trois anticouleurs respectives) ; les mésons sont formés d'une paire quark-antiquark où l'antiquark possède l'anticouleur associée à la couleur du quark, de bilan neutre. La charge de couleur diffère de la charge électromagnétique, qui n'a qu'un type de valeur (les charges positive et négative sont de même valeur, et ne diffèrent que par le signe). Peu après la découverte de l'existence des quarks en 1964, on a introduit la notion de charge de couleur pour expliquer comment les quarks pouvaient coexister dans les hadrons dans des états qui sinon sembleraient identiques, et donc continuer de satisfaire le principe d'exclusion de Pauli.
Alessandro Mapelli, Radoslav Marchevski, Alina Kleimenova
Josef Andreas Schuler, Luc Burnier, Jérémy Jacques Antonin Fleury
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Wei Sun, Jian Zhao, Thomas Berger, Federica Legger, Bandeep Singh, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Francesco Fiori, Quentin Python, Meng Xiao, Sourav Sen, Viktor Khristenko, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Pratyush Das, Miao Hu, Anton Petrov, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer