Résumé
In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime. Conversely, a process that is not in ergodic regime is said to be in non-ergodic regime. One can discuss the ergodicity of various statistics of a stochastic process. For example, a wide-sense stationary process has constant mean and autocovariance that depends only on the lag and not on time . The properties and are ensemble averages (calculated over all possible sample functions ), not time averages. The process is said to be mean-ergodic or mean-square ergodic in the first moment if the time average estimate converges in squared mean to the ensemble average as . Likewise, the process is said to be autocovariance-ergodic or d moment if the time average estimate converges in squared mean to the ensemble average , as . A process which is ergodic in the mean and autocovariance is sometimes called ergodic in the wide sense. The notion of ergodicity also applies to discrete-time random processes for integer . A discrete-time random process is ergodic in mean if converges in squared mean to the ensemble average , as . Ergodicity means the ensemble average equals the time average. Following are examples to illustrate this principle. Each operator in a call centre spends time alternately speaking and listening on the telephone, as well as taking breaks between calls. Each break and each call are of different length, as are the durations of each 'burst' of speaking and listening, and indeed so is the rapidity of speech at any given moment, which could each be modelled as a random process. Take N call centre operators (N should be a very large integer) and plot the number of words spoken per minute for each operator over a long period (several shifts). For each operator you will have a series of points, which could be joined with lines to create a 'waveform'.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (24)
Concepts associés (4)
Ergodicity
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Théorie ergodique
vignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Processus stationnaire
Pour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps.
Afficher plus
Cours associés (7)
COM-300: Stochastic models in communication
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
COM-516: Markov chains and algorithmic applications
The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some appl
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Afficher plus
Séances de cours associées (72)
Approches dynamiques de la théorie spectrale des opérateurs
Couvre les approches dynamiques de la théorie spectrale des opérateurs et des solutions des équations différentielles.
Physique statistique : Isolement des systèmesPHYS-105: Advanced physics II (thermodynamics)
Explore les concepts de physique statistique dans des systèmes isolés, en se concentrant sur l'entropie et le désordre.
Propriétés ergonomiques de systèmes symboliques de faible complexité
Explore l'influence de la complexité sur les propriétés ergonomiques des systèmes symboliques, présentant le théorème Curtis-Hedlund-Lyndon et les constructions de sous-postes minimaux.
Afficher plus