KurtosisEn théorie des probabilités et en statistique, le kurtosis (du nom féminin grec ancien κύρτωσις, « courbure »), aussi traduit par coefficient d’acuité, coefficient d’aplatissement et degré de voussure, est une mesure directe de l’acuité et une mesure indirecte de l'aplatissement de la distribution d’une variable aléatoire réelle. Il existe plusieurs mesures de l'acuité et le kurtosis correspond à la méthode de Pearson. C’est le deuxième des paramètres de forme, avec le coefficient d'asymétrie (les paramètres fondés sur les moments d’ordre 5 et plus n’ont pas de nom propre).
Loi d'ErlangLa distribution d'Erlang est une loi de probabilité continue, dont l'intérêt est dû à sa relation avec les distributions exponentielle et Gamma. Cette distribution a été développée par Agner Krarup Erlang afin de modéliser le nombre d'appels téléphoniques simultanés. La distribution est continue et possède deux paramètres : le paramètre de forme , un entier, et le paramètre d'intensité , un réel. On utilise parfois une paramétrisation alternative, où on considère plutôt le paramètre d'échelle .
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Loi de StudentEn théorie des probabilités et en statistique, la loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ. Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne. Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ à k degrés de liberté.
Loi du χEn théorie des probabilités et en statistique, la loi du (prononcer « khi ») est une loi de probabilité continue. C'est la loi de la moyenne quadratique de k variables aléatoires indépendantes de loi normale centrée réduite, le paramètre k est le nombre de degrés de liberté. L'exemple le plus courant est la loi de Maxwell, pour k=3 degrés de liberté d'une loi du ; elle modélise la vitesse moléculaire (normalisée). Si sont k variables aléatoires indépendantes de loi normale avec pour moyenne et écart-type , alors la variable est de loi du .