Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la chaîne Markov Monte Carlo pour l'échantillonnage des distributions haute dimension, en discutant des défis, des avantages et des applications comme le problème Knapsack et la cryptographie.
Couvre l'estimation des paramètres en métrologie quantique, Quantum Fisher Information, l'interférométrie de Ramsey, l'intrication et l'impact du bruit sur les états NooN.
Explore l'apprentissage des modèles latents dans des structures graphiques, en se concentrant sur des scénarios avec des échantillons incomplets et en introduisant la notion de distance entre les variables.
Explore des modèles stochastiques pour les communications, couvrant la moyenne, la variance, les fonctions caractéristiques, les inégalités, diverses variables aléatoires discrètes et continues, et les propriétés de différentes distributions.
Explore le concept de distribution stationnaire dans les chaînes de Markov, en discutant de ses propriétés et de ses implications, ainsi que des conditions d'une récurrence positive.
Couvre les statistiques descriptives, les tests d'hypothèses et l'analyse de corrélation avec diverses distributions de probabilités et des statistiques robustes.