Concepts associés (18)
Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
Albanese variety
In mathematics, the Albanese variety , named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. The Albanese variety is the abelian variety generated by a variety taking a given point of to the identity of . In other words, there is a morphism from the variety to its Albanese variety , such that any morphism from to an abelian variety (taking the given point to the identity) factors uniquely through .
Faisceau (de modules)
En mathématique, un faisceau de modules est un faisceau sur un espace localement annelé qui possède une structure de module sur le faisceau structural . Sur un espace localement annelé , un faisceau de -modules (ou un -Module) est un faisceau sur tel que soit un -module pour tout ouvert , et que pour tout ouvert contenu dans , l'application restriction soit compatible avec les structures de modules: pour tous , on a Les notions de sous--modules et de morphismes de -modules sont claires.
Holomorphic vector bundle
In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
Variété jacobienne
En géométrie algébrique, la jacobienne d'une courbe est une variété algébrique (en fait une variété abélienne) qui paramètrise les diviseurs de degré 0 sur . C'est un objet fondamental pour l'étude des courbes, et c'est aussi un exemple de variété abélienne qui sert de variété test. On fixe une courbe algébrique projective lisse de genre au moins 1 sur un corps . Dans une première approximation, on peut dire que sa jacobienne est une variété algébrique dont les points correspondent aux diviseurs de degré 0 sur modulo équivalence rationnelle.
Complex projective space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space.
Diviseur (géométrie algébrique)
En mathématiques, plus précisément en géométrie algébrique, les diviseurs sont une généralisation des sous-variétés de codimension 1 de variétés algébriques ; deux généralisations différentes sont d'un usage commun : les diviseurs de Weil et les diviseurs de Cartier. Les deux concepts coïncident dans les cas des variétés non singulières. En géométrie algébrique, comme en géométrie analytique complexe, ou en géométrie arithmétique, les diviseurs forment un groupe qui permet de saisir la nature d'un schéma (une variété algébrique, une surface de Riemann, un anneau de Dedekind.
Théorie de Hodge
La théorie de Hodge est l'étude, avec l'apport notamment de la topologie algébrique, des formes différentielles sur une variété lisse. En conséquence elle éclaire l'étude des variétés riemanniennes et kählériennes, ainsi que l'étude géométrique des motifs. Elle tient son nom du mathématicien écossais William Hodge. Un des problèmes du prix du millénaire a trait à cette théorie : la conjecture de Hodge.
Cohomologie des faisceaux
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Invertible sheaf
In mathematics, an invertible sheaf is a sheaf on a ringed space which has an inverse with respect to tensor product of sheaves of modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Let (X, OX) be a ringed space. Isomorphism classes of sheaves of OX-modules form a monoid under the operation of tensor product of OX-modules. The identity element for this operation is OX itself.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.