thumb|Pierre de Fermat (1601-1665).
En mathématiques, le théorème des deux carrés de Fermat énonce les conditions pour qu’un nombre entier soit la somme de deux carrés parfaits (c'est-à-dire de deux carrés d’entiers) et précise de combien de façons différentes il peut l’être. Par exemple, selon ce théorème, un nombre premier impair (c'est-à-dire tous les nombres premiers sauf 2) est une somme de deux carrés parfaits si et seulement si le reste de sa division euclidienne par 4 est 1 ; dans ce cas, les carrés sont déterminés de manière unique. On peut le vérifier sur 17 (= 4 × 4 + 1) ou 97 (= 24 × 4 + 1), qui sont bien tous deux d’une seule façon une somme de deux carrés (17 = 1 + 4 et 97 = 9 + 4), alors que des nombres premiers comme 7 (= 4 × 1 + 3) ou 31 (= 4 × 7 + 3) ne sont pas des sommes de deux carrés. Ce résultat est parfois nommé simplement théorème des deux carrés ou bien encore théorème de Fermat de Noël.
Il s’inscrit dans la longue histoire de la représentation de nombres comme sommes de carrés qui remonte à l'Antiquité. Il est explicité par Pierre de Fermat au , mais la première preuve publiée connue est l'œuvre de Leonhard Euler un siècle plus tard. Sa démonstration ne clôt pas les interrogations. Des nouvelles preuves et diverses généralisations sont proposées au cours des siècles suivants. Elles ont joué un rôle important dans le développement d’une branche des mathématiques appelée théorie algébrique des nombres.
À l'instar de beaucoup d'équations diophantiennes, c’est-à-dire d’équations dont les coefficients et les solutions cherchées sont des nombres entiers ou fractionnaires, la simplicité de l'énoncé cache une difficulté réelle de démonstration. Certaines des preuves proposées ont aidé à la mise au point d'outils parfois sophistiqués, comme les courbes elliptiques ou la géométrie des nombres, liant ainsi la théorie des nombres élémentaire à d’autres branches des mathématiques.
Certains nombres premiers sont sommes de deux carrés parfaits. C’est bien sûr le cas de 2 (= 1 + 1) ; de même, 5 est la somme de 1 et de 4.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
En mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Le théorème des quatre carrés de Lagrange, également connu sous le nom de conjecture de Bachet, s'énonce de la façon suivante : Tout entier positif peut s'exprimer comme la somme de quatre carrés. Plus formellement, pour tout entier positif n, il existe des entiers a, b, c, d tels que : n = a + b + c + d. Il correspond à une équation diophantienne qui se résout avec les techniques de l'arithmétique modulaire.
En mathématiques, plus précisément en arithmétique modulaire, un entier naturel q est un résidu quadratique modulo n s'il possède une racine carrée en arithmétique modulaire de module n. Autrement dit, q est un résidu quadratique modulo n s'il existe un entier x tel que : Dans le cas contraire, on dit que q est un non-résidu quadratique modulo n Par exemple : modulo 4, les résidus quadratiques sont les entiers congrus à 2 ≡ 0 = 0 ou à (±1) = 1.
In the present paper, a multi-step reconstruction procedure is proposed for high order finite volume schemes on unstructured grids using compact stencil. The procedure is a recursive algorithm that can eventually provide sufficient relations for high order ...
We prove new equidistribution results for Galois orbits of Heegner points with respect to single reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution ...
Springer Verlag2011
In this paper we study the regularized Petersson product between a holomorphic theta series associated to a positive definite binary quadratic form and a weakly holomorphic weight-one modular form with integral Fourier coefficients. In [18], we proved that ...