Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
Schwarz triangleIn geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere (spherical tiling), possibly overlapping, through reflections in its edges. They were classified in . These can be defined more generally as tessellations of the sphere, the Euclidean plane, or the hyperbolic plane. Each Schwarz triangle on a sphere defines a finite group, while on the Euclidean or hyperbolic plane they define an infinite group.
Symbole de WythoffEn géométrie, un symbole de Wythoff est une notation courte, créée par le mathématicien Willem Abraham Wythoff, pour nommer les polyèdres réguliers et semi-réguliers utilisant une construction kaléidoscopique, en les représentant comme des pavages sur la surface d'une sphère, sur un plan euclidien ou un plan hyperbolique. Le symbole de Wythoff donne 3 nombres p,q,r et une barre verticale positionnelle (|) qui sépare les nombres avant et après elle. Chaque nombre représente l'ordre des miroirs à un sommet du triangle fondamental.
Order-3 apeirogonal tilingIn geometry, the order-3 apeirogonal tiling is a regular tiling of the hyperbolic plane. It is represented by the Schläfli symbol {∞,3}, having three regular apeirogons around each vertex. Each apeirogon is inscribed in a horocycle. The order-2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as {∞,2}. Each apeirogon face is circumscribed by a horocycle, which looks like a circle in a Poincaré disk model, internally tangent to the projective circle boundary.
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Polyèdre quasi régulierUn polyèdre dont les faces sont des polygones réguliers, qui est transitif sur ses sommets, et qui est transitif sur ses arêtes, est dit quasi régulier. Un polyèdre quasi régulier peut avoir des faces de deux sortes seulement, et celles-ci doivent alterner autour de chaque sommet. Pour certains polyèdres quasi réguliers : on utilise un symbole de Schläfli vertical pour représenter le polyèdre quasi régulier combinant les faces du polyèdre régulier {p,q} et celles du dual régulier {q,p} : leur noyau commun.
Heptagonal tilingIn geometry, a heptagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {7,3}, having three regular heptagons around each vertex. This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {n,3}. From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling. Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.
Order-7 triangular tilingIn geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,7}. The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is the (2,3,7) Schwarz triangle. This is the smallest hyperbolic Schwarz triangle, and thus, by the proof of Hurwitz's automorphisms theorem, the tiling is the universal tiling that covers all Hurwitz surfaces (the Riemann surfaces with maximal symmetry group), giving them a triangulation whose symmetry group equals their automorphism group as Riemann surfaces.
Triheptagonal tilingIn geometry, the triheptagonal tiling is a semiregular tiling of the hyperbolic plane, representing a rectified Order-3 heptagonal tiling. There are two triangles and two heptagons alternating on each vertex. It has Schläfli symbol of r{7,3}. Compare to trihexagonal tiling with vertex configuration 3.6.3.6. In geometry, the 7-3 rhombille tiling is a tessellation of identical rhombi on the hyperbolic plane. Sets of three and seven rhombi meet two classes of vertices.