Loi des sinusEn trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du et, pour la forme plane, par Nasir al-Din al-Tusi au début du .
Zijvignette|Tables astronomiques d'al-Khwārizmī.|alt=Page d'ouvrage ancien. Un zij (du زيج, zyj, en زیج, zaj) désigne dans l’astronomie persane et l'astronomie arabe un ensemble de tables qui permettent de connaître ainsi que de retrouver (grâce à un certain nombre d'astuces) la position des astres dans le ciel à une date donnée. Il ne s'agit pas de traités d’astronomie théorique mais au contraire de traités d’astronomie pratique, orientés surtout sur l’astrologie qui avait une importance sociale majeure à l'époque de leur rédaction.
Degré (angle)vignette|Un angle de 45 degrés. Le degré d'angle (ou d'arc), ou simplement degré (symbole : °), est une unité d'angle, définie comme la trois-cent-soixantième partie d'un angle plein (1/360 tour). Un degré est équivalent à π/180 radians. Lorsque cet angle est en rapport avec un méridien de référence, il indique un emplacement le long d'un grand cercle d'une sphère, comme la Terre (voir Coordonnées géographiques), Mars ou la sphère céleste.
ExsecantThe exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astronomy, and spherical trigonometry and could help improve accuracy, but are rarely used today except to simplify some calculations.
Edmund GunterEdmund Gunter (1581 - ) est un mathématicien anglais d'origine galloise né dans le Hertfordshire en 1581. Il fréquenta la Westminster School et en 1599 fut admis comme étudiant à Christ Church à Oxford. Il rentra dans les ordres, devint prédicateur en 1614 et acquit le niveau de bachelor in divinity en 1615. Toutefois les mathématiques, qui avaient été son sujet d'étude favori pendant sa jeunesse, continuaient à capter son attention et le , il fut nommé professeur d’astronomie au Gresham College de Londres.
Construction des tables trigonométriquesvignette|Page d'un livre de 1619 contenant une table trigonométrique Les tables de fonctions trigonométriques sont utiles dans beaucoup de domaines. Avant l'existence des calculatrices de poche, les tables trigonométriques étaient essentielles pour la navigation, dans les sciences et dans la technologie. La réalisation de tables de valeurs approchées des fonctions représentait un domaine d'étude important, et mena au développement des premiers dispositifs de calcul mécaniques.
ProstaphérèseLa prostaphérèse est un algorithme que l'on utilisait à la fin du pour effectuer rapidement quoique approximativement les multiplications ou les divisions de nombres ayant beaucoup de chiffres. Cette technique, utilisant des formules de trigonométrie, était en vogue chez les scientifiques durant le quart de siècle qui a précédé l'invention des logarithmes en 1614. Son nom vient de la contraction de deux mots grecs : (« addition ») et (« soustraction »), le principe du procédé étant d'effectuer des additions et soustractions à la place de la (grosse) multiplication ou division.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Small-angle approximationThe small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision.
Triangulationthumb En géométrie et trigonométrie, la triangulation est une technique permettant de déterminer la position d'un point en mesurant les angles entre ce point et d'autres points de référence dont la position est connue, et ceci plutôt que de mesurer directement la distance entre les points. Ce point peut être considéré comme étant le troisième sommet d'un triangle dont on connaît deux angles et la longueur d'un côté. Par analogie, la triangulation fait également référence à l'usage croisé de techniques de recueil de données en étude qualitative, notamment en sciences sociales.