Conditional convergenceIn mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. More precisely, a series of real numbers is said to converge conditionally if exists (as a finite real number, i.e. not or ), but A classic example is the alternating harmonic series given by which converges to , but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem.
Limite (mathématiques)En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).
Série alternéeEn mathématiques, et plus particulièrement en analyse, une série alternée est un cas particulier de série à termes réels, dont la forme particulière permet d'avoir des résultats de convergence notables. Une série à termes réels est dite alternée si ses termes sont de signes alternés, c'est-à-dire si elle est de la forme : avec ai des nombres réels positifs. Le principal critère de convergence concernant les séries alternées permet de montrer que certaines séries alternées non absolument convergentes sont convergentes, notamment la série harmonique alternée.
Série convergenteEn mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).