Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Couvre les concepts fondamentaux de probabilité et de statistiques, y compris les résultats intéressants, le modèle standard, le traitement de l'image, les espaces de probabilité et les tests statistiques.
Introduit le classificateur Naive Bayes, qui couvre les hypothèses d'indépendance, les probabilités conditionnelles et les applications dans la classification des documents et le diagnostic médical.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.