Cylindrevignette|Un cylindre quelconque. vignette|Divers cylindres droits (le premier est un cylindre circulaire droit). Un cylindre est une surface réglée dont les génératrices sont parallèles, c'est-à-dire une surface dans l'espace constituée de droites parallèles. On parle aussi de surface cylindrique. C'est un exemple de surface développable. On peut considérer un cylindre comme un cône dont le sommet est « rejeté à l'infini ». Par extension, on appelle encore cylindre le solide délimité par une surface cylindrique et par deux plans strictement parallèles.
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Tronc (géométrie)Un tronc est la partie d'un solide située entre deux plans parallèles. Le solide est généralement un cône ou une pyramide. Les faces du solide obtenues dans les plans de coupe sont appelées bases du tronc, et la distance entre les deux plans de coupe est la hauteur du tronc. Le volume d'un tronc de pyramide ou de cône est le produit de sa hauteur par la moyenne arithmétique des aires de ses bases et de leur moyenne géométrique.
Robbins pentagonIn geometry, a Robbins pentagon is a cyclic pentagon whose side lengths and area are all rational numbers. Robbins pentagons were named by after David P. Robbins, who had previously given a formula for the area of a cyclic pentagon as a function of its edge lengths. Buchholz and MacDougall chose this name by analogy with the naming of Heron triangles after Hero of Alexandria, the discoverer of Heron's formula for the area of a triangle as a function of its edge lengths.
Papyrus Rhindvignette|Un extrait du papyrus Rhind. vignette|Détail d'une des deux principales parties du papyrus Rhind, British Museum, EA 10057. Le papyrus Rhind est un célèbre papyrus de la Deuxième Période intermédiaire qui a été écrit par le scribe Ahmès. Son nom vient de l'Écossais Alexander Henry Rhind qui l'acheta en 1858 à Louxor, mais il aurait été découvert par des pilleurs sur le site de la ville voisine de Thèbes. Depuis 1865, il est conservé au British Museum (à Londres).
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Droite (mathématiques)En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Théorème de ThalèsLe théorème de Thalès est un théorème de géométrie qui affirme que, dans un plan, à partir d'un triangle, une droite parallèle à l'un des côtés définit avec les droites des deux autres côtés un nouveau triangle, semblable au premier (voir énoncé précis ci-dessous). En anglais, il est connu sous le nom de intercept theorem (soit « théorème d'interception ») ; en allemand, il est appelé Strahlensatz, c'est-à-dire « théorème des demi-droites » ou Vierstreckensatz, « théorème des quatre segments ».
János BolyaiJános Bolyai (, Kolozsvár - , Marosvásárhely) est un mathématicien hongrois, l'un des pères de la géométrie non euclidienne. Bolyai naît en 1802 dans le Grand-duché de Transylvanie à Kolozsvár (aujourd'hui Cluj-Napoca en Roumanie), alors partie intégrante de l'empire d'Autriche. Son père, Farkas Bolyai, est lui-même un mathématicien reconnu, ami de Gauss et s'occupe de son éducation. János, à 13 ans, maîtrise déjà la mécanique analytique, son père s'occupant de son éducation. Sa mère est Zsuzsanna Benkő de Árkos.