Pont aux ânesL'expression Pont aux ânes (en latin pons asinorum) est une métaphore servant à fustiger un « quia » c'est-à-dire un refus imbécile de se rendre à l'évidence. Elle qualifie un raisonnement, une proposition ou un ensemble de propositions qui, quoique parfaitement explicités, restent incompris de certaines personnes. C'est une façon de signifier à ceux qui ne comprennent pas que s'ils ne comprennent pas, ce n'est pas faute d'explications, mais parce qu'eux-mêmes manquent d'intelligence ou ne font pas assez d'efforts d'attention ou de concentration.
Hyperplane at infinityIn geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. Similarly, starting from an affine space A, every class of parallel lines can be associated with a point at infinity.
Henry Frederick BakerHenry Frederick Baker ( – ), est un mathématicien britannique, qui travailla principalement en géométrie algébrique, mais aussi connu pour ses contributions aux équations aux dérivées partielles, liées à ce qui allait devenir connu sous le nom de solitons, et aux groupes de Lie. Il est né à Cambridge, de Henty Baker, un majordome, et Sarah Ann Britham. Il a fait ses études à la avant de remporter une bourse d'études au St John's College de Cambridge, en . Baker est diplômé en tant que Senior Wrangler à l'issue du Tripos en 1887 entre crochets avec 3 autres.
Commensurabilité (mathématiques)La commensurabilité est un terme mathématique essentiellement employé en histoire des mathématiques. Utilisé principalement dans la Grèce antique, il correspond au concept actuel de nombre rationnel. En mathématiques, deux grandeurs de même nature (deux longueurs, deux aires, deux volumes, etc.) non nulles a et b sont commensurables si et seulement s'il existe une unité u de ces grandeurs dont a et b soient multiples, i.e. tels qu'il existe un couple d'entiers (m, n) tels que a = mu et b = nu.
Adolf HurwitzAdolf Hurwitz (né à Hildesheim le - mort à Zurich le ) est un mathématicien allemand qui est une des figures importantes des mathématiques de la seconde moitié du . Il fait ses études doctorales sous la direction de Felix Klein à Leipzig, soutenant sa thèse sur les fonctions elliptiques modulaires en 1881. En 1884, on lui offre un poste de professeur à Kœnigsberg ; il y rencontre le jeune David Hilbert, sur qui il exerce une grande influence. Il occupe en 1892 une chaire de mathématiques à l'École polytechnique fédérale de Zurich et y enseigne le reste de sa vie.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
ProportionnalitéEn mathématiques, on dit que deux suites de nombres sont proportionnelles quand, en multipliant (ou en divisant) par une même constante non nulle, les termes de l'une on obtient les termes de l'autre. Le facteur constant entre l'une et l'autre de ces suites est appelé coefficient de proportionnalité. Ces suites de nombres étant par exemple des grandeurs mesurées. Exemple : dans un magasin, le prix des pommes est de le kilogramme. Il y a proportionnalité entre la somme S à payer et le poids P de pommes achetées, avec un coefficient de proportionnalité égal à 2.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Birkhoff's axiomsIn 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms. These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiom system was utilized in the secondary-school textbook by Birkhoff and Beatley.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).