Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
BrahmaguptaBrahmagupta (ब्रह्मगुप्त) (Multân, 598–670) est un mathématicien et astronome indien. Brahmagupta est l'un des plus importants mathématiciens tant de l'Inde que de son époque. On lui connait deux ouvrages majeurs : le Brāhmasphuṭasiddhānta (ब्राह्मस्फुटसिद्धान्त) en 628 et le Khandakhâdyaka en 665. Il dirige l'observatoire astronomique d'Ujjain, ville qui est au un centre majeur de recherches en mathématique.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Incidence (geometry)In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point lies on a line" or "a line is contained in a plane" are used. The most basic incidence relation is that between a point, P, and a line, l, sometimes denoted P I l. If P I l the pair (P, l) is called a flag. There are many expressions used in common language to describe incidence (for example, a line passes through a point, a point lies in a plane, etc.
Hermann Günther GrassmannHermann Günther Grassmann (né le à Stettin et mort le dans la même ville) est un mathématicien et indianiste prussien. Polymathe, il est connu de ses contemporains en tant que linguiste. Physicien, néo-humaniste, érudit mais aussi éditeur, Hermann Grassmann est avec Niels Abel, Évariste Galois et Georg Cantor l’un des grands mathématiciens « malheureux » du . Selon le mot de Albert C. Lewis : Il est considéré aujourd'hui comme le fondateur du calcul tensoriel et de la théorie des espaces vectoriels.
AlhazenAlhazen ou Alhacen, de son vrai nom Ibn al-Haytham ou de son nom complet Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham (en arabe : أبو علي الحسن بن الحسن بن الهيثم ) (Bassora, c.965 – Le Caire, c.1040) est un mathématicien, philosophe, physiologiste et physicien du monde médiéval arabo-musulman. Considéré comme un pionnier de la méthode scientifique et le fondateur de l'optique moderne, il s'illustre par ses travaux novateurs dans toutes les branches de l'optique, principalement en optique géométrique et physiologique.
Équation diophantiennevignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres.
Pierre de FermatPierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.
Quadrilatère inscriptibleEn géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.