Résumé
vignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres. Si l'expression du problème posé est parfois simple, les méthodes de résolution peuvent devenir complexes. Carl Friedrich Gauss, au , écrivait de la théorie des nombres que Certaines équations diophantiennes ont demandé pour leur résolution les efforts conjugués de nombreux mathématiciens sur plusieurs siècles. Gauss se plaignait Le dernier théorème de Fermat est un exemple archétypal ; il est conjecturé par Pierre de Fermat et démontré en 1994 par Andrew Wiles, après 357 ans d'efforts de la part de nombreux mathématiciens. L'intérêt de la résolution de questions de cette nature réside rarement dans l'établissement d'un théorème clé pour les mathématiques, la physique ou les applications industrielles, même s'il existe des contre exemples comme la cryptologie, qui fait grand usage du petit théorème de Fermat. Leur analyse amène le développement d'outils mathématiques puissants dont l'usage dépasse le cadre de l'arithmétique. Les formes quadratiques sont à cet égard exemplaires. La richesse et la beauté formelle des techniques issues de la résolution d’équations diophantiennes fait de l'arithmétique la branche « reine des mathématiques » pour David Hilbert. Ce type d'équation doit son nom à Diophante d'Alexandrie, mathématicien grec du , auteur des Arithmétiques, traitant de questions de cette nature. Si les questions diophantiennes deviennent rapidement difficiles, il existe certaines exceptions résolubles avec un minimum d'outils théoriques et une démonstration courte et simple.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.