Résumé
En géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point. gauche|vignette|, vignette| Un quadrilatère convexe est inscriptible si et seulement si les angles opposés sont supplémentaires (leur somme est π radians, soit 180°). Ou de façon équivalente, si et seulement si chaque angle externe est égal à l'angle interne opposé. Cette propriété est en fait une variante du théorème de l'angle inscrit et de l'angle au centre. Un quadrilatère croisé est inscriptible si et seulement si ses angles opposés ont même mesure. Théorème de Sturm : s'il existe un quadrilatère de longueurs de côtés successifs , c'est-à-dire si , alors il existe un quadrilatère convexe inscriptible ayant pour longueurs de côtés. Cela signifie que les sommets de tout quadrilatère articulé peuvent être inscrits dans un cercle. L'aire S d'un quadrilatère convexe inscriptible en fonction des longueurs a, b, c et d de ses côtés successifs est donnée par la formule de Brahmagupta : où est le demi-périmètre. D'après la formule de Bretschneider, un quadrilatère convexe ayant a, b, c d pour suite de longueurs des côtés possède une aire maximale lorsqu'il est inscriptible. L'aire d'un quadrilatère convexe inscriptible est aussi donnée par : où γ est l'angle entre les côtés de longueurs a et d. Le théorème de Ptolémée dit que le produit des longueurs e et f des deux diagonales d'un quadrilatère convexe inscriptible est égal à la somme des produits des longueurs des côtés opposés ac et bd : Les deux diagonales d'un quadrilatère convexe le coupent en quatre triangles ; lorsque le quadrilatère est inscriptible, les paires de triangles opposés sont constituées chacune de deux triangles semblables.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Séances de cours associées (34)
Opérations élémentaires en géométrie
Explore les angles extérieurs en triangles, les angles inscrits en cercles et la puissance d'un point par rapport à un cercle.
Géométrie euclidienne : opérations et constructions
Couvre les opérations et les constructions fondamentales en géométrie euclidienne, en se concentrant sur les interprétations algébriques et les constructions de règle et de compas.
Nombres de complexes : Représentation et propriétés
Couvre la représentation des nombres complexes et de leurs propriétés, y compris les formules d'Euler et Moivre.
Afficher plus
Publications associées (6)

Efficient Preparation of Cyclic Quantum States

Giovanni De Micheli, Fereshte Mozafari Ghoraba

Universal quantum algorithms that prepare arbitrary n-qubit quantum states require O(2n) gate complexity. The complexity can be reduced by considering specific families of quantum states depending on the task at hand. In particular, multipartite quantum st ...
IEEE2022
Afficher plus
Personnes associées (1)
Concepts associés (36)
Formule de Brahmagupta
En géométrie euclidienne, la formule de Brahmagupta, portant le nom du mathématicien indien du Brahmagupta, est une généralisation de la formule de Héron à l'aire d'un quadrilatère convexe inscriptible (c'est-à-dire dont les sommets se situent sur un même cercle), uniquement en fonction des longueurs de ses côtés : où est le demi-périmètre du quadrilatère, a, b, c et d sont les longueurs de ses côtés et S son aire . Elle représente un cas particulier de la formule de Bretschneider donnant l'aire d'un quadrilatère non forcément inscriptible, concave ou convexe mais non croisé.
Quadrilatère
En géométrie plane, un quadrilatère est un polygone à quatre côtés. Les trapèzes, parallélogrammes, losanges, rectangles, carrés et cerfs-volants sont des quadrilatères particuliers. Le mot « quadrilatère » provient du latin : quatuor, quatre, et latus, lateris, côté. Le mot équivalent d'origine grecque est tétrapleure (de τεσσερα / tèssera, quatre, et πλευρά / pleura, côté) ou tétragone (de γωνία / gônia, angle). Le mot tétragone était employé par Gerbert d'Aurillac au et par Oresme au .
Alignement (géométrie)
vignette|Sur cette figure, les points a1,a2,a3 sont alignés, ainsi que les points b1,b2,b3. En revanche, les points a1,a2,b3 ne sont pas alignés. En géométrie, l’alignement est une propriété satisfaite par certains familles de points, lorsque ces derniers appartiennent collectivement à une même droite. Deux points étant toujours alignés en vertu du premier axiome d’Euclide, la notion d’alignement ne présente d’intérêt qu’à partir d’une collection de trois points.
Afficher plus