Publications associées (22)

COMMUNICATION LOWER BOUNDS AND OPTIMAL ALGORITHMS FOR MULTIPLE TENSOR-TIMES-MATRIX COMPUTATION

Laura Grigori

Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
Philadelphia2024

WikiArtVectors: Style and Color Representations of Artworks for Cultural Analysis via Information Theoretic Measures

With the increase in massive digitized datasets of cultural artefacts, social and cultural scientists have an unprecedented opportunity for the discovery and expansion of cultural theory. The WikiArt dataset is one such example, with over 250,000 high qual ...
MDPI2022

Leveraging topology, geometry, and symmetries for efficient Machine Learning

Michaël Defferrard

When learning from data, leveraging the symmetries of the domain the data lies on is a principled way to combat the curse of dimensionality: it constrains the set of functions to learn from. It is more data efficient than augmentation and gives a generaliz ...
EPFL2022

Ergodic Exploration Using Tensor Train: Applications in Insertion Tasks

Sylvain Calinon, Suhan Narayana Shetty

In robotics, ergodic control extends the tracking principle by specifying a probability distribution over an area to cover instead of a trajectory to track. The original problem is formulated as a spectral multiscale coverage problem, typically requiring t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

Finding Steady States of Communicating Markov Processes Combining Aggregation/Disaggregation with Tensor Techniques

Francisco Santos Paredes Quartin de Macedo

Stochastic models for interacting processes feature a dimensionality that grows exponentially with the number of processes. This state space explosion severely impairs the use of standard methods for the numerical analysis of such Markov chains. In this wo ...
Springer Int Publishing Ag2016

Riemannian Optimization For High-Dimensional Tensor Completion

Michael Maximilian Steinlechner

Tensor completion aims to reconstruct a high-dimensional data set where the vast majority of entries is missing. The assumption of low-rank structure in the underlying original data allows us to cast the completion problem into an optimization problem rest ...
Siam Publications2016

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.