Couvre le calcul des intégrales curvilignes pour une fonction continue en R^n et l'interprétation de l'intégrale comme la somme de petits segments le long d'une courbe.
Discute des applications du calcul dans le calcul des longueurs et des surfaces de révolution, en mettant l'accent sur le calcul intégral et les interprétations géométriques.