Jean-Pierre SerreJean-Pierre Serre, né le à Bages (Pyrénées-Orientales), est un mathématicien français, considéré comme l’un des plus grands mathématiciens du . Il reçoit de nombreuses récompenses pour ses recherches, et est en particulier lauréat de la médaille Fields en 1954, du prix Balzan en 1985, de la médaille d'or du CNRS en 1987, du prix Wolf de mathématiques en 2000, et le premier lauréat du prix Abel en 2003. Jean-Pierre Serre est né en 1926 à Bages (Pyrénées-Orientales) d'Adèle et Jean Serre, pharmaciens, et passe son enfance à Vauvert où ils sont installés.
Mathématiques mésopotamiennesthumb|250px|Photographie de la tablette YBC 7289 annotée. Les nombres écrits dans le système babylonien donnent la racine carrée de 2 avec quatre chiffres sexagésimaux significatifs, soit près de six chiffres décimaux :1 + 24/60 + 51/602 + 10/603 = 1,41421296... (crédit : Bill Casselman). Les mathématiques mésopotamiennes sont les mathématiques pratiquées par les peuples de l'ancienne Mésopotamie (dans l’Irak actuel), depuis l'époque des Sumériens jusqu'à la chute de Babylone en .
Integer triangleAn integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles. Sometimes other definitions of the term rational triangle are used: Carmichael (1914) and Dickson (1920) use the term to mean a Heronian triangle (a triangle with integral or rational side lengths and area);cite book |last=Carmichael |first=R.
Diophante d'AlexandrieDiophante d'Alexandrie (en grec ancien : Διόφαντος ὁ Ἀλεξανδρεύς Dióphantos ho Alexandreús) était un mathématicien de langue grecque qui a vécu à Alexandrie entre le et le , peut-être au ou au . Connu pour ses Arithmétiques, ouvrage dont une partie est aujourd'hui perdue, et où il étudie certaines équations diophantiennes, il est parfois surnommé le « père de l'algèbre ». On ne connaît rien ou à peu près de la vie de Diophante, même l'époque à laquelle il a vécu reste très incertaine. Il vécut à Alexandrie.
Dixième problème de HilbertLe dixième problème de Hilbert fait partie de la liste des 23 problèmes posés par David Hilbert en 1900 à Paris, lors de sa conférence au congrès international des mathématiciens. Il énonce : énoncé| X. — De la possibilité de résoudre une équation diophantienne. On donne une équation diophantienne à un nombre quelconque d'inconnues et à coefficients entiers rationnels : On demande de trouver une méthode par laquelle, au moyen d'un nombre fini d'opérations, on pourra distinguer si l'équation est résoluble en nombres entiers rationnels.
ArithmétiquesLes Arithmétiques (Arithmetica) est une œuvre mathématique en grec due à Diophante d'Alexandrie, qui a eu une grande influence dans l'histoire des mathématiques. Elle aurait été écrite au de notre ère, selon l'hypothèse la plus courante chez les historiens, mais elle est difficile à dater. Elle se présente comme une liste de problèmes résolus, de nature que l'on pourrait qualifier aujourd'hui d'arithmétique ou algébrique : les problèmes se traduisent par des équations polynomiales portant sur des nombres rationnels positifs.
Carl Friedrich GaussJohann Carl Friedrich Gauß ( ; traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le à Brunswick et mort le à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. La qualité extraordinaire de ses travaux scientifiques était déjà reconnue par ses contemporains.