En analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées partielles elliptique du second ordre suivante :
où est l'opérateur laplacien et est une distribution généralement donnée.
Sur un domaine borné de et de frontière régulière, le problème de trouver à partir de et satisfaisant certaines conditions aux limites appropriées est un problème bien posé : la solution existe et est unique.
Ce problème est important en pratique :
En électrostatique, la formulation classique (voir Équation de Poisson-Boltzmann) exprime le potentiel électrique associé à une distribution connue de charges par la relation
En gravitation universelle, le potentiel gravitationnel est relié à la masse volumique par la relation
En mécanique des fluides, pour des écoulements incompressibles, la pression est reliée au champ de vitesse par une équation de Poisson. Par exemple, en 2D, en notant les composantes du champ de vitesse , la relation s'écrit :
où représente la masse volumique du fluide.
L'équation de Poisson étant insensible à l’ajout sur d’une fonction satisfaisant l’équation de Laplace (ou une simple fonction linéaire par exemple), une condition aux limites est nécessaire pour espérer l'unicité de la solution : par exemple les conditions de Dirichlet, celles de Neumann, ou des conditions mixtes sur des portions de frontière.
En coordonnées cartésiennes dans , considérons un ouvert , une fonction continue sur et une fonction continue sur la frontière . Le problème consiste à trouver une fonction de deux variables réelles définie sur qui vérifie les deux relations :
sur et sur
Cette formulation est un modèle mathématique du problème statique d’une membrane élastique tendue et chargée (une peau de tambour) :
est la densité de charge (exprimée par exemple en Pa, ceci à un multiple près caractérisant les propriétés d’élasticité de la membrane) ;
est la cote (élévation verticale) le long de la frontière de fixation de la membrane ;
la solution indique la cote de la membrane dans .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850.
The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star
clusters, galaxies, and galaxy clusters.
We study the homogenization of the Poisson equation with a reaction term and of the eigenvalue problem associated to the generator of multiscale Langevin dynamics. Our analysis extends the theory of two-scale convergence to the case of weighted Sobolev spa ...
OXFORD UNIV PRESS2023
To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...
2023
,
Invariant solutions of the Navier-Stokes equations play an important role in the spatiotemporally chaotic dynamics of turbulent shear flows. Despite the significance of these solutions, their identification remains a computational challenge, rendering many ...
Couvre des sujets avancés en physique, notamment les forces empiriques, les applications des lois de Newton, l'élan, l'impulsion, le travail, l'énergie et l'élan angulaire.