Géométrie sphériqueLa géométrie sphérique est une branche de la géométrie qui s'intéresse à la surface bidimensionnelle d'une sphère. C'est un exemple de géométrie non euclidienne. En géométrie plane, les concepts de base sont les points et les droites. Sur une surface plus générale, les points gardent leur sens usuel ; par contre, les équivalents des droites sont définies comme les lignes matérialisant le chemin le plus court entre les points, qu'on appelle des géodésiques.
Disque unitédroite|vignette|Disque unité ouvert avec la distance euclidienne. En mathématiques, le disque unité ouvert autour de P (où P est un point donné dans le plan), est l'ensemble des points dont la distance à P est inférieure à 1 : Le disque unité fermé autour de P est l'ensemble des points dont la distance à P est inférieure ou égale à un : Les disques unités sont des cas particuliers de disques et de boules unités ; en tant que tels, ils contiennent l'intérieur du cercle unité et, dans le cas du disque unité fermé, le cercle unité lui-même.
Dimension topologiqueEn mathématiques, une dimension topologique est une notion destinée à étendre à des espaces topologiques la notion algébrique de dimension d'un espace vectoriel. C'est un invariant topologique, entier ou infini. Les trois principales dimensions topologiques sont les deux dimensions inductives ind et Ind et la dimension de recouvrement dim. Les dimensions Ind et dim coïncident pour tout espace métrisable ; si l'espace est de plus séparable, ses trois dimensions topologiques sont égales.
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
Espace pseudo-euclidienEn mathématiques, et plus particulièrement en géométrie, un espace pseudo-euclidien est une extension du concept d'espace euclidien, c'est-à-dire que c'est un espace vectoriel muni d'une forme bilinéaire (qui définirait la métrique dans le cas d'un espace euclidien), mais cette forme n'est pas définie positive, ni même positive. L'espace de Minkowski est un exemple d'espace pseudo-euclidien. Dans les espaces euclidiens, les notions de métrique et d'orthogonalité sont construites par l'adjonction d'un produit scalaire à un espace vectoriel réel de dimension finie.
Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Disque (géométrie)vignette|Disque. Un disque est une figure géométrique dans un plan (ou plutôt une surface plane) formée des points situés à une distance inférieure ou égale, à une valeur donnée R d'un point O nommé centre. R est le rayon du disque. La frontière du disque est un cercle de centre O et de rayon R appelé Périmètre. Le disque est fermé si la frontière est incluse, et ouvert si elle n'en fait pas partie. Dans le langage courant, on appelle disque un objet plat circulaire, qui est plus exactement un cylindre de révolution d'épaisseur faible devant son rayon.
Structure différentielleEn mathématiques, une structure différentielle à n dimensions (ou structure différentiable) sur un ensemble M transforme M en une variété différentielle à n dimensions, qui est une variété topologique avec une structure supplémentaire qui permet un calcul différentiel sur la variété. Si M est déjà une variété topologique, il est nécessaire que la nouvelle topologie soit identique à celle existante.
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
Orientabilitédroite|vignette| Un tore est une surface orientable droite|vignette| Le ruban de Möbius est une surface non orientable. Notez que le crabe violoniste qui se déplace autour de lui est retourné à gauche et à droite à chaque circulation complète. Cela ne se produirait pas si le crabe était sur le tore. droite|vignette| La surface romaine n'est pas orientable En mathématiques, l'orientabilité est une propriété des surfaces dans l'espace euclidien qui mesure s'il est possible de faire un choix cohérent de vecteur normal de surface en chaque point.