droite|vignette| Un tore est une surface orientable droite|vignette| Le ruban de Möbius est une surface non orientable. Notez que le crabe violoniste qui se déplace autour de lui est retourné à gauche et à droite à chaque circulation complète. Cela ne se produirait pas si le crabe était sur le tore. droite|vignette| La surface romaine n'est pas orientable En mathématiques, l'orientabilité est une propriété des surfaces dans l'espace euclidien qui mesure s'il est possible de faire un choix cohérent de vecteur normal de surface en chaque point. Le choix d'un vecteur normal permet d'utiliser la règle de la main droite pour définir une direction "dans le sens des aiguilles d'une montre" des boucles dans la surface, comme l'exige le théorème de Stokes par exemple. Plus généralement, l'orientabilité d'une surface abstraite, ou variété, mesure si l'on peut systématiquement choisir une orientation « dans le sens des aiguilles d'une montre » pour toutes les boucles dans la variété. De manière équivalente, une surface est orientable si une figure bidimensionnelle (telle que 20x20px|alt=camembert divisé en trois portions de couleurs respectives bleu, rouge, vert, en tournant dans le sens horaire.) dans l'espace ne peut pas être déplacé en continu sur cette surface et revenir à son point de départ pour qu'il ressemble à sa propre image miroir 20x20px|alt=camembert divisé en trois portions de couleurs respectives bleu, vert, rouge, en tournant dans le sens horaire.). La notion d'orientabilité peut également être généralisée aux variétés de dimension supérieure. Une variété est orientable si elle a un choix cohérent d'orientations, et une variété orientable connexe a exactement deux orientations possibles différentes. Dans ce cadre, diverses formulations équivalentes d'orientabilité peuvent être données, en fonction de l'application souhaitée et du niveau de généralité. Les formulations applicables aux variétés topologiques générales utilisent souvent des méthodes de théorie de l'homologie, alors que pour les variétés différentiables, plus de structures est disponible, permettant une formulation en termes de formes différentielles.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (33)
Personnes associées (1)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.