Concepts associés (125)
Carbone 13
Le carbone 13, noté C, est l'isotope du carbone dont le nombre de masse est égal à 13 : son noyau atomique compte et avec un spin 1/2- pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . C'est un isotope stable constituant environ 1,1 % du carbone terrestre. Possédant un spin nucléaire non nul, le C est couramment utilisé pour la résonance magnétique nucléaire.
Hélium 4
L’hélium 4, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 4 : son noyau atomique compte deux protons et deux neutrons pour une masse atomique de et un spin 0+. Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Son rayon de charge a pu être estimé expérimentalement à . En physique nucléaire, le noyau d' est souvent appelé particule α. Sur Terre, l'hélium 4 provient de la radioactivité α des éléments lourds présents dans la planète depuis sa formation.
Formule de Weizsäcker
La formule de Weizsäcker, appelée aussi formule de Bethe-Weizsäcker, est une formule semi-empirique donnant une valeur approximative de l'énergie de liaison nucléaire B caractérisant la liaison entre les nucléons qui constituent le noyau des atomes (voir un résumé dans Modèle de la goutte liquide). L'éponyme de formule de Weizsäcker est le physicien allemand Carl Friedrich von Weizsäcker (-) qui l'a proposée en dans un article publié dans le de. Les physiciens Hans Bethe (-) et Robert Bacher (-) en ont simplifié l'expression en .
Effet isotopique cinétique
L'effet isotopique cinétique (en anglais, kinetic isotope effect ou KIE) est la variation de la vitesse d'une réaction chimique lorsqu'un atome d'un des réactifs est remplacé par l'un de ses isotopes. Par exemple, le remplacement d'un atome C par un atome C conduit à un effet isotopique cinétique défini par le rapport des constantes de vitesse (on met en général au numérateur la constante qui concerne l'isotope le plus léger). Dans la substitution nucléophile du bromure de méthyle par l'ion cyanure, le rapport mesuré est de .
Accelerator mass spectrometry
Accelerator mass spectrometry (AMS) is a form of mass spectrometry that accelerates ions to extraordinarily high kinetic energies before mass analysis. The special strength of AMS among the mass spectrometric methods is its power to separate a rare isotope from an abundant neighboring mass ("abundance sensitivity", e.g. 14C from 12C). The method suppresses molecular isobars completely and in many cases can separate atomic isobars (e.g. 14N from 14C) also.
Plutonium 244
Le plutonium 244, noté Pu, est l'isotope du plutonium dont le nombre de masse est égal à 244 : son noyau atomique compte et avec un spin 0+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Un gramme de présente une radioactivité de . Il donne de l'uranium 240 par avec une période radioactive de et une énergie de désintégration de . Dans 0,12 % des cas, il se désintègre par fission spontanée, soit spontanées par seconde dans un kilogramme de Pu pur.
Carbone 14
Le carbone 14, noté C, est l'isotope du carbone dont le nombre de masse est égal à 14 (c'est un isobare de la forme la plus commune de l'azote) : son noyau atomique compte et avec un spin 0+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Le a longtemps été le seul radioisotope du carbone à avoir des applications. Pour cette raison, il était appelé radiocarbone. Un gramme de carbone 14 pur présente une activité de .
Nucléosynthèse stellaire
La nucléosynthèse stellaire est le terme utilisé en astrophysique pour désigner l'ensemble des réactions nucléaires qui se produisent à l'intérieur des étoiles (fusion nucléaire et processus s) ou pendant leur destruction explosive (processus r, p, rp) et dont le résultat est la synthèse de la plupart des noyaux atomiques. La position d'une étoile sur le diagramme de Hertzsprung-Russell détermine en grande partie les éléments qu'elle synthétise. L'origine des éléments a posé un problème difficile aux scientifiques pendant longtemps.
Nucléide
Le nucléide désigne, pour les atomes, leur noyau atomique caractérisé par leur nombre de protons et de neutrons ainsi que par leur état d'énergie nucléaire ; à un nucléide correspond l'ensemble des atomes ayant des noyaux identiques. Le nucléide se différencie de l'isotope, qui n'est identifié que par son nombre de protons et de neutrons ; il peut exister plusieurs nucléides pour un même isotope. Le mot « nucléide », forgé à partir du latin , a été proposé en anglais (nuclide) par Truman P. Kohman en 1947.
Traceur isotopique
Les traceurs isotopiques sont utilisés en chimie, en hydrochimie, en géologie isotopique et en biochimie afin de mieux comprendre certaines réactions chimiques, interactions ou la cinétique environnementale de certains éléments. Les processus biologiques, physiques et chimiques induisent en effet une répartition différentielle des isotopes légers et lourds, comportement appelé fractionnement isotopique. Le traçage isotopique utilise cette propriété des traceurs isotopiques.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.