Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Couvre les modules injectables, les modules Ox-modules, et leur pertinence dans les structures algébriques, soulignant leur importance dans la résolution des résolutions acycliques et l'informatique de la cohomologie.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.