Algèbre de PoissonUne algèbre de Poisson est une algèbre associative sur laquelle est défini un crochet de Lie qui satisfait la règle de Leibniz. L'exemple le plus important en est donné par l'algèbre des fonctions lisses sur une variété de Poisson ou, plus particulièrement, sur une variété symplectique. Ces algèbres ont été nommées algèbres de Poisson en l'honneur de Siméon Denis Poisson.
Théorème de Darboux (géométrie)vignette|Portrait de Gaston Darboux, mathématicien ayant démontré ce théorème. Le théorème de Darboux est un théorème central de la géométrie symplectique : les variétés symplectiques de dimension sont deux à deux localement symplectomorphes. Plus explicitement : Ce résultat implique l'inexistence d'invariant local en géométrie symplectique. Cette situation s'oppose à la géométrie riemannienne pour laquelle il existe un invariant local de classe , la courbure. Ainsi, la géométrie symplectique est essentiellement globale.
Hamiltonian systemA Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system.
Symplectic vector fieldIn physics and mathematics, a symplectic vector field is one whose flow preserves a symplectic form. That is, if is a symplectic manifold with smooth manifold and symplectic form , then a vector field in the Lie algebra is symplectic if its flow preserves the symplectic structure. In other words, the Lie derivative of the vector field must vanish: An alternative definition is that a vector field is symplectic if its interior product with the symplectic form is closed.
Method of quantum characteristicsQuantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories.
Relation de JacobiIn mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product and the Lie bracket operation both satisfy the Jacobi identity.
Minimal couplingIn analytical mechanics and quantum field theory, minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher multipole moments of the charge distribution. This minimal coupling is in contrast to, for example, Pauli coupling, which includes the magnetic moment of an electron directly in the Lagrangian. In electrodynamics, minimal coupling is adequate to account for all electromagnetic interactions. Higher moments of particles are consequences of minimal coupling and non-zero spin.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.
Hamiltonien en théorie des champsEn physique théorique, la théorie des champs hamiltoniens est analogue à la mécanique hamiltonienne classique, appliquée à la théorie des champs. C'est un formalisme de la théorie classique des champs qui se base sur la théorie lagrangienne des champs. Elle a également des applications dans la théorie quantique des champs. L'hamiltonien, pour un système de particules discrètes, est une fonction qui dépend de leurs coordonnées généralisées et de leurs moments conjugués, et éventuellement du temps.
Constant of motionIn mechanics, a constant of motion is a quantity that is conserved throughout the motion, imposing in effect a constraint on the motion. However, it is a mathematical constraint, the natural consequence of the equations of motion, rather than a physical constraint (which would require extra constraint forces). Common examples include energy, linear momentum, angular momentum and the Laplace–Runge–Lenz vector (for inverse-square force laws). Constants of motion are useful because they allow properties of the motion to be derived without solving the equations of motion.