Molecule editorA molecule editor is a computer program for creating and modifying representations of chemical structures. Molecule editors can manipulate chemical structure representations in either a simulated two-dimensional space or three-dimensional space, via 2D computer graphics or 3D computer graphics, respectively. Two-dimensional output is used as illustrations or to query chemical databases. Three-dimensional output is used to build molecular models, usually as part of molecular modelling software packages.
Binary collision approximationIn condensed-matter physics, the binary collision approximation (BCA) is a heuristic used to more efficiently simulate the penetration depth and defect production by energetic ions (with kinetic energies in the kilo-electronvolt (keV) range or higher) in solids. In the method, the ion is approximated to travel through a material by experiencing a sequence of independent binary collisions with sample atoms (nuclei). Between the collisions, the ion is assumed to travel in a straight path, experiencing electronic stopping power, but losing no energy in collisions with nuclei.
Pelote aléatoireUne pelote aléatoire est une conformation d'un polymère dans laquelle les unités monomères sont orientées de façon aléatoire, en étant néanmoins liées aux unités adjacentes. Il ne s'agit pas d'une forme précise, mais d'une répartition statistique de formes pour toutes les chaînes dans une population de macromolécules. Le nom de cette conformation provient de l'idée que, en l'absence d'interactions spécifiques, stabilisantes, une chaîne polymère va « échantillonner » toutes les conformations possibles de manière aléatoire.
Angle dièdreEn géométrie, l'angle entre deux plans est appelé angle dièdre, ou angle diédral (anglicisme). L'angle dièdre d'un tétraèdre régulier, correspond à l'angle observé au sol, dans un plan perpendiculaire à l'une des arêtes au sol, que font la base du tétraèdre et une face. Face dont la base est, au sol, « vue de bout » (soit un point pour une arête). L'angle dièdre de deux plans peut être mesuré sur les « bords » des plans, c'est-à-dire suivant leur ligne d'intersection.
Radiation material scienceRadiation materials science is a subfield of materials science which studies the interaction of radiation with matter: a broad subject covering many forms of irradiation and of matter. Some of the most profound effects of irradiation on materials occur in the core of nuclear power reactors where atoms comprising the structural components are displaced numerous times over the course of their engineering lifetimes.
Méthode quantique semi-empiriqueLes méthodes semi-empiriques sont des techniques de résolution de l'équation de Schrödinger de systèmes à plusieurs électrons. Contrairement aux méthodes ab initio, les méthodes semi-empiriques utilisent des données ajustées sur des résultats expérimentaux afin de simplifier les calculs. La longueur et la difficulté des calculs est en grande partie due aux intégrales biélectroniques qui apparaissent au cours du processus de résolution.
Q (software)Q is a computer software package for molecular dynamics (MD) simulation (current release: Q6). Unlike other MD codes, it has specialized since its conception (Marelius et al. 1998) on three specific types of free energy calculations. These calculations are based on the methods: empirical valence bond (EVB), free energy perturbation (FEP), and linear interaction energy (LIE), as well as, more recently, also path integral calculations using the bisection quantum classical path (BQCP) approach.
Rosetta@homeRosetta@home est un projet de calcul distribué ouvert le . Son objectif est déterminer la structure de protéines, afin de pouvoir élaborer des traitements contre les principales pathologies humaines. Ce projet est mené par le laboratoire du professeur de l'université de Washington. En , le projet a une puissance de calcul de 156 téraFLOPS. Rosetta@home est un projet informatique de calcul distribué qui utilise le système BOINC disponible sur les plates formes Windows, Linux, et Mac OS X.
Pouvoir d'arrêt (rayonnement ionisant)En traversant la matière, les particules chargées ionisent les atomes ou les molécules le long de leur parcours, avec pour conséquence que les particules perdent peu à peu leur énergie. Le pouvoir d'arrêt est la perte moyenne d'énergie de la particule par unité de distance parcourue, mesurée par exemple en MeV/cm (voir la figure ci-contre). Le pouvoir d'arrêt dépend du type de particule, de son énergie et des propriétés de la matière traversée.