Une pelote aléatoire est une conformation d'un polymère dans laquelle les unités monomères sont orientées de façon aléatoire, en étant néanmoins liées aux unités adjacentes. Il ne s'agit pas d'une forme précise, mais d'une répartition statistique de formes pour toutes les chaînes dans une population de macromolécules. Le nom de cette conformation provient de l'idée que, en l'absence d'interactions spécifiques, stabilisantes, une chaîne polymère va « échantillonner » toutes les conformations possibles de manière aléatoire. De nombreux homopolymères linéaires, non ramifiés - en solution, ou au-dessus de leur température de transition vitreuse - se présentent sous forme de pelotes aléatoires (approximatives). Les copolymères issus de monomères de longueurs inégales se distribueront aussi en pelotes aléatoires si leurs sous-unités n'ont pas d'interactions spécifiques. Des parties de polymères ramifiés peuvent aussi se présenter sous forme de pelotes aléatoires. En deçà de leur températures de fusion, la plupart des polymères thermoplastiques (polyéthylène, polyamide...) présentent des régions amorphes où les chaînes s'approchent de pelotes aléatoires, alternant avec des régions cristallines. Les régions amorphes apportent de l'élasticité à l'ensemble, tandis que les régions cristallines tendent au contraire à le rigidifier et à le consolider. Des polymères plus complexes, comme des protéines avec des radicaux chimiques différents attachées à leur chaîne principale en interagissant entre elles, s'auto-assemblent dans des structures bien définies. Mais des segments de protéines, et de polypeptides dépourvus de structures secondaires, sont souvent considérés comme présentant une conformation de pelote aléatoire dans laquelle les seules relations avérées sont les liaisons peptidiques entre résidus acido-aminés. Ce n'est pas en réalité le cas, l'ensemble est pondéré énergétiquement en raison des interactions entre chaînes d'acides aminés, avec une plus grande fréquence de présence des conformations de plus basses énergies.
Christian Heinis, Yu Teng Wu, Alessandro Zorzi, Jack Peter Christopher Williams
Paolo De Los Rios, Pierre Goloubinoff, Satyam Tiwari, Bruno Claude Daniel Fauvet, Salvatore Assenza