Dynamique symboliqueEn mathématiques, la dynamique symbolique est une branche de l'étude des systèmes dynamiques. Cela consiste à étudier un système en partitionnant l'espace en un nombre fini de régions et en s'intéressant aux suites possibles de régions traversées lors de l'évolution du système. Si l'on associe à chaque région un symbole, on peut associer à chaque trajectoire une suite (infinie) de symboles, d'où le nom de « dynamique symbolique ».
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Opérateur de transfertEn mathématiques, l'opérateur de transfert encode l'information d'une application itérée et est fréquemment utilisé pour étudier le comportement des systèmes dynamiques, de la mécanique statistique, du chaos quantique et des fractales. L'opérateur de transfert est quelquefois appelé l'opérateur de Ruelle, en l'honneur de David Ruelle, ou l'opérateur de Ruelle-Perron-Frobenius faisant référence à l'applicabilité du théorème de Perron-Frobenius pour la détermination des valeurs propres de l'opérateur.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Décalage de Bernoulli (langage formel)Un décalage de Bernoulli (en anglais Bernoulli shift) est une transformation opérant sur des mots de longueur infinie, étudiée en dynamique symbolique. Étant donné un alphabet Λ, c'est-à-dire un ensemble fini. Un mot infini est une suite à valeurs dans l'alphabet Λ. Le décalage de Bernoulli est l'application qui décale un mot d'un cran vers la gauche : On peut définir de même les décalages de Bernoulli pour des mots infinis indexés sur et les résultats et propriétés énoncés sont similaires.
Fonction itéréeEn mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Ornstein isomorphism theoremIn mathematics, the Ornstein isomorphism theorem is a deep result in ergodic theory. It states that if two Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphic. The result, given by Donald Ornstein in 1970, is important because it states that many systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai's billiards, ergodic automorphisms of the n-torus, and the continued fraction transform.
Théorie ergodiquevignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).