Mesure signéeEn mathématiques et plus particulièrement en théorie de la mesure, une mesure signée est une extension de la notion de mesure dans le sens où les valeurs négatives sont autorisées, ce qui n'est pas le cas d'une mesure classique qui est, par définition, à valeurs positives. Une mesure signée est dite finie si elle ne prend que des valeurs réelles, c'est-à-dire, si elle ne prend jamais les valeurs ou . Pour clarifier, on utilisera le terme de « mesure positive », au lieu du simple « mesure », pour les mesures signées ne prenant jamais de valeurs strictement négatives.
Théorème d'extension de CarathéodoryEn théorie de la mesure, le théorème d'extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué par généralisation à un cadre abstrait des idées fondant la construction de la mesure de Lebesgue, et exposé sous diverses variantes, il est également mentionné par certains auteurs sous les noms de théorème de Carathéodory-Hahn ou théorème de Hahn-Kolmogorov (certaines sources distinguent un théorème de Carathéodory qui est l'énoncé d'existence, et un théorème de Hahn qui est l'énoncé d'unicité).
Mesure de probabilitévignette|300x300px| Dans de nombreux cas, la physique statistique utilise des mesures de probabilité, mais toutes les mesures qu'elle utilise ne sont pas des mesures de probabilité. En mathématiques, une mesure de probabilité est une fonction à valeurs réelles définie sur un ensemble d'événements dans un espace de probabilité qui satisfait les propriétés de mesure telles que la -additivité. La différence entre une mesure de probabilité et la notion plus générale de mesure (qui inclut des concepts tels que l'aire ou le volume) est qu'une mesure de probabilité doit attribuer la valeur 1 à tout l'espace de probabilité.
Almost everywhereIn measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull.
Complétion d'une mesureEn mathématiques, une mesure μ est dite complète lorsque tout ensemble négligeable pour cette mesure appartient à la tribu sur laquelle μ est définie. Lorsqu'une mesure n'est pas complète, il existe un procédé assez simple de complétion de la mesure, c'est-à-dire de construction d'une mesure complète apparentée de très près à la mesure initiale. Ainsi la mesure de Lebesgue (considérée comme mesure sur la tribu de Lebesgue) est la complétion de la mesure dite parfois « mesure de Borel-Lebesgue », c'est-à-dire sa restriction à la tribu borélienne.
Henri-Léon LebesgueHenri-Léon Lebesgue (1875-1941), plus connu sous le nom de Henri Lebesgue, né à Beauvais, est l'un des grands mathématiciens français de la première moitié du . Il est reconnu pour sa théorie d'intégration publiée initialement dans sa thèse Intégrale, longueur, aire, soutenue à la Faculté des sciences de Paris en 1902. Le père de Lebesgue, qui était ouvrier typographe, et ses deux sœurs aînées moururent de tuberculose alors qu'il avait trois ans. Ensuite, sa mère a travaillé pour qu'il puisse faire des études.
Set functionIn mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning.
Espace mesuréA measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the σ-algebra) and the method that is used for measuring (the measure). One important example of a measure space is a probability space. A measurable space consists of the first two components without a specific measure.
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.
Intervalle unitéEn mathématique, l'intervalle unité est l'intervalle fermé [0,1], c'est-à-dire, l'ensemble de tous les nombres réels qui sont supérieurs ou égaux à 0 et inférieurs ou égaux à 1. Il est souvent noté I. Dans la littérature, le terme "intervalle unité" est parfois appliqué à d'autres intervalles : (0,1], [0,1), et (0,1). Cependant, la notation I est généralement réservée à l'intervalle fermé [0,1]. L'intervalle unité est un espace métrique complet.