In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory.
More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull. In cases where the measure is not complete, it is sufficient that the set be contained within a set of measure zero. When discussing sets of real numbers, the Lebesgue measure is usually assumed unless otherwise stated.
The term almost everywhere is abbreviated a.e.; in older literature p.p. is used, to stand for the equivalent French language phrase presque partout.
A set with full measure is one whose complement is of measure zero. In probability theory, the terms almost surely, almost certain and almost always refer to events with probability 1 not necessarily including all of the outcomes. These are exactly the sets of full measure in a probability space.
Occasionally, instead of saying that a property holds almost everywhere, it is said that the property holds for almost all elements (though the term almost all can also have other meanings).
If is a measure space, a property is said to hold almost everywhere in if there exists a set with , and all have the property . Another common way of expressing the same thing is to say that "almost every point satisfies ", or that "for almost every , holds".
It is not required that the set has measure 0; it may not belong to . By the above definition, it is sufficient that be contained in some set that is measurable and has measure 0.
If property holds almost everywhere and implies property , then property holds almost everywhere. This follows from the monotonicity of measures.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante. Ce concept est tout d'abord apparu en analyse réelle pour les fonctions numériques et a été généralisé ensuite dans le cadre plus abstrait de la théorie des ordres. Intuitivement (voir les figures ci-contre), la représentation graphique d'une fonction monotone sur un intervalle est une courbe qui « monte » constamment ou « descend » constamment.
En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f.
Summary form only given. Radiative coupling between one or more quantum wells (QWs) and the single-cavity mode of a moderate reflectivity semiconductor microcavity leads to normal-mode coupling (NMC), observed as a doubled-peaked spectrum in reflection, tr ...
1998 Technical Digest Series Vol.7 (IEEE Cat. No.98CH36236). Opt. Soc. America Washington DC USA1998
We show that phase space bounds on the eigenvalues of Schrodinger operators can be derived from universal bounds recently obtained by E. M. Harrell and the author via a monotonicity property with respect to coupling constants. In particular, we provide a n ...