Résumé
Henri-Léon Lebesgue (1875-1941), plus connu sous le nom de Henri Lebesgue, né à Beauvais, est l'un des grands mathématiciens français de la première moitié du . Il est reconnu pour sa théorie d'intégration publiée initialement dans sa thèse Intégrale, longueur, aire, soutenue à la Faculté des sciences de Paris en 1902. Le père de Lebesgue, qui était ouvrier typographe, et ses deux sœurs aînées moururent de tuberculose alors qu'il avait trois ans. Ensuite, sa mère a travaillé pour qu'il puisse faire des études. Élève brillant dès l'école élémentaire, Lebesgue étudia plus tard à l'École normale supérieure après un passage par le Lycée Saint-Louis puis par le Lycée Louis-le-Grand. Il a enseigné au lycée de Nancy de 1899 à 1902. Après sa thèse en 1902, il est nommé maître de conférences à l'université de Rennes. En 1910, il est maître de conférences à la Sorbonne, puis professeur en 1918. Il est élu au Collège de France en 1921, à l'Académie des sciences en 1922 et à la Royal Society en 1934. Il est connu pour sa théorie de la mesure, laquelle prolonge les premiers travaux importants d'Émile Borel, l'un de ses professeurs et plus tard son ami. Il mit au point une théorie des fonctions mesurables (1901) en se fondant sur les résultats d'Émile Borel : les tribus boréliennes. Henri Lebesgue a révolutionné et généralisé le calcul intégral. Sa théorie de l'intégration (1902-1904) est extrêmement commode d'emploi, et répond aux besoins des physiciens. En effet, elle permet de rechercher et de prouver l'existence de primitives pour des fonctions « irrégulières » et recouvre différentes théories antérieures qui en sont des cas particuliers : fonctions en escalier et fonctions continues de Riemann fonctions bornées de Darboux fonctions à variation bornée de Stieltjes. On lui doit aussi la transformée de Fourier établie dans la fin des années 1930. Comme son père, Henri Lebesgue a eu une santé déficiente tout au long de sa vie. Il se maria avec la sœur d'un de ses camarades de l'École normale supérieure et eut deux enfants, Suzanne et Jacques.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.