Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discuter de la façon dont l'apprentissage de caractéristiques éparses peut conduire à une suradaptation dans les réseaux neuraux malgré des preuves empiriques de généralisation.
Explore les techniques de réduction de la variance dans l'apprentissage profond, couvrant la descente en gradient, la descente en gradient stochastique, la méthode SVRG, et la comparaison des performances des algorithmes.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
Explore les erreurs optimales dans les modèles de grande dimension, en comparant les algorithmes et en faisant la lumière sur l'interaction entre l'architecture du modèle et la performance.