Résumé
En informatique, le tri fusion, ou tri dichotomique, est un algorithme de tri par comparaison stable. Sa complexité temporelle pour une entrée de taille n est de l'ordre de n log n, ce qui est asymptotiquement optimal. Ce tri est basé sur la technique algorithmique diviser pour régner. L'opération principale de l'algorithme est la fusion, qui consiste à réunir deux listes triées en une seule. L'efficacité de l'algorithme vient du fait que deux listes triées peuvent être fusionnées en temps linéaire. Le tri fusion se décrit naturellement sur des listes et c'est sur de telles structures qu'il est à la fois le plus simple et le plus rapide. Cependant, il fonctionne aussi sur des tableaux. La version la plus simple du tri fusion sur les tableaux a une efficacité comparable au tri rapide, mais elle n'opère pas en place : une zone temporaire de données supplémentaire de taille égale à celle de l'entrée est nécessaire (des versions plus complexes peuvent être effectuées sur place mais sont moins rapides). Sur les listes, sa complexité est optimale, il s'implémente très simplement et ne requiert pas de copie en mémoire temporaire. À partir de deux listes triées, on peut facilement construire une liste triée comportant les éléments issus de ces deux listes (leur fusion). Le principe de l'algorithme de tri fusion repose sur cette observation : le plus petit élément de la liste à construire est soit le plus petit élément de la première liste, soit le plus petit élément de la deuxième liste. Ainsi, on peut construire la liste élément par élément en retirant tantôt le premier élément de la première liste, tantôt le premier élément de la deuxième liste (en fait, le plus petit des deux, à supposer qu'aucune des deux listes ne soit vide, sinon la réponse est immédiate). Ce procédé est appelé fusion et est au cœur de l'algorithme de tri développé ci-après. vignette|upright=1.2|Algorithme animé. L'algorithme est naturellement décrit de façon récursive. Si le tableau n'a qu'un élément, il est déjà trié.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.