Clôture (mathématiques)On parle de clôture ou de fermeture en mathématiques dans des contextes très divers. Quelques exemples sont listés ci-dessous. En mathématiques, on dit qu'une partie A d'un ensemble E est stable (ou close) pour une opération définie sur E si cette opération, appliquée à des éléments de A, produit toujours un élément de A. Par exemple, l'ensemble des nombres réels est stable par soustraction, tandis que l'ensemble des entiers naturels ne l'est pas (la différence de deux entiers naturels est parfois un entier relatif strictement négatif).
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Ensemble partiellement ordonnéEn mathématiques, un ensemble partiellement ordonné (parfois appelé poset d'après l'anglais partially ordered set) formalise et généralise la notion intuitive d'ordre ou d'arrangement entre les éléments d'un ensemble. Un ensemble partiellement ordonné est un ensemble muni d'une relation d'ordre qui indique que pour certains couples d'éléments, l'un est plus petit que l'autre. Tous les éléments ne sont pas forcément comparables, contrairement au cas d'un ensemble muni d'un ordre total.
Equivalence classIn mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set and an equivalence relation on the of an element in denoted by is the set of elements which are equivalent to It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of by and is denoted by .
Weak orderingIn mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by (strictly) partially ordered sets and preorders.
PréordreEn mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre.