Explore les modèles ARCH et GARCH, le regroupement de volatilité, les séries chronologiques, l'estimation et les étapes de filtrage dans les contextes financier et macroéconomique.
Explore la vraisemblance du Whittle déprécié pour les séries chronologiques et les données spatiales, en mettant l'accent sur l'adaptation de la densité spectrale au parodogramme pour de meilleures prédictions et une meilleure estimation des paramètres.
Explore l'apprentissage des modèles latents dans des structures graphiques, en se concentrant sur des scénarios avec des échantillons incomplets et en introduisant la notion de distance entre les variables.
Couvre les approches d'apprentissage automatique pour la personnalisation et leur application dans le monde réel, en mettant l'accent sur les devoirs, les projets et les commentaires.